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ABSTRACT 

Wireless communication technology has become a critical aspect in many civilian and 

military applications.  With regard to remote sensing, search and rescue, disaster relief 

operations and signals intelligence, there exists an interest in developing capabilities to 

collect these signals-of-interest.  The objective of this dissertation is to maximize signal 

collection performance in the presence of signal measurement and sensor related errors.  

To accomplish this objective, we proposed a signal collection scheme that exploits an 

elevated, mobile network to maximize the collaborative collection of a target signal. 

The proposed scheme begins with source localization.  This technique consists of 

an initial weighted least-squares estimate followed by a maximum-likelihood estimate.  

Implemented on an elevated, mobile network, this technique is able to obtain an optimal 

localization.  To enhance localization robustness, we developed an outlier rejection 

process that mitigates the effects of measurement and sensor position errors.   

To collect the signal, this research quantified the effects of sensor position errors 

on beamforming and proposed a novel signal collection scheme that combines signal 

estimation and collaborative beamforming.  Using all these techniques in concert, we 

were able to show that the proposed scheme outperforms standard collaborative 

beamforming in the presence of sensor position errors. 
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EXECUTIVE SUMMARY 

Wireless communication technology has penetrated many aspects of both civilian and 

military applications.  With cellular technology constantly evolving and proliferating, we 

now see wireless communications as an integral part of daily life.  With regard to remote 

sensing, search and rescue, disaster relief operations and signals intelligence, there exists 

an interest in developing capabilities to collect these signals.  The objective of this 

dissertation is to maximize signal collection performance in the presence of various 

signal- and sensor-related errors.  To accomplish this objective, we proposed a signal 

collection scheme that exploits an elevated, mobile network to maximize the 

collaborative collection of a target signal. 

With its roots dating back to the development of radar during World War II, 

beamforming has found a prominent place in modern wireless communications.  In its 

classical use, through the manipulation of array weights, beamforming coherently 

amplifies a signal in a given direction, while reducing undesirable signals in others.  

Although, beamforming is a powerful technique that enables spatial filtering, it has a 

strong dependence on the a priori knowledge of the target signal’s direction of arrival 

[1].  Because of this dependency, beamforming is often initialized by source localization. 

Our proposed scheme begins with a source localization technique; this technique 

is used to determine the signal’s position and direction of arrival.  This knowledge is then 

used by a collaborative beamformer to maximize and collect the target signal.  Both of 

these techniques are enhanced through the use of an elevated, mobile network.  This 

mobility allows for the reconfiguration of the sensor network’s topology to create an 

ideal sensor-target geometry.  This geometry minimizes any geometric dilutions of 

precision, thus allowing for an optimal location estimate to be achieved [2].  The 

network’s elevation increases signal power and range while enabling unique sensor 

formations for signal collection that is robust against sensor position errors. 

The proposed scheme begins with a localization technique.  In this localization, 

we propose a two-stage technique capable of obtaining an accurate localization in the 



 xviii

presence of signal noise and sensor position errors.  This technique consists of an initial 

weighted least-squares estimate followed by a refining maximum-likelihood estimate.  

Here, the initial estimate is used to reconfigure the network’s topology.  This 

reconfiguration is used to create an optimal sensor network to target geometry, thus 

creating the necessary conditions for the refining estimation to deliver an optimal location 

estimate.  Our simulation results show the proposed localization technique to be efficient, 

i.e., it approaches the Cramer-Rao lower bound in the small error region [2].   

To enhance the localization performance, we developed a measurement outlier 

rejection process to mitigate the effects of measurement and sensor position errors.  This 

technique uses a combination of single case diagnostics and the Mahalanobis distance to 

identify and remove specious measurements for the least-squares estimate [3].  Through 

simulation, we demonstrated this technique to be effective in the presence of both 

measurement and position errors.  

To develop the proposed signal collection scheme, we began by analyzing the 

effects of sensor position errors on the array factor.  We derived an expression for the 

effects of position error on the array’s main beam gain.  Through simulation, we 

validated our results and showed that the mean value of the main beam signal phase was 

unaffected by position errors.  To enhance the collection performance in the presence of 

these errors, we developed a signal estimator for both uniform and Gaussian position 

errors.  Our simulation results showed a maximum improvement in array gain of 

approximately 37 percent for the standard deviation of position error values greater than 

0.4 m.  Other results demonstrated that our approach of combining a signal estimation 

technique with collaborative beamforming is a viable means of collecting a target signal 

from an elevated, mobile wireless sensor network.   

Taking advantage of the concept of a unique elevated, mobile wireless sensor 

network realized through the use of multirotor UAVs, our scheme used two existing 

localization techniques to deliver a precise source location estimate.  Using this 

information with statistical knowledge of the sensor position errors in a signal estimator, 

we were able to derive a novel collaborative signal collection scheme.  This scheme was 

shown to be capable of collecting and amplifying a target signal in the presence of such 
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errors.  With all these techniques in concert, the objective of this dissertation to maximize 

signal collection performance in the presence of various signal- and sensor-related errors 

was achieved. 
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I. INTRODUCTION 

Wireless communication technology has penetrated many aspects of both civilian 

and military applications.  The International Telecommunications Union (ITU) estimates 

that there are approximately seven billion cellular subscribers worldwide [1]. This 

translates to a global penetration rate of 95.5 percent and is expected to increase each 

year.  Clearly, wireless communications has become a common aspect of human life.  

With regard to remote sensing, search and rescue, disaster relief operations and/or signals 

intelligence, there exists an interest in developing capabilities to collect these signals.  

One such solution is collaborative beamforming [2].   

With its roots dating back to the development of radar during World War II, 

beamforming has found a prominent place in modern wireless communications.  

Beamforming is much akin to the matched filter but from a spatial perspective [3].  

Instead of linearly weighting a time domain signal for signal filtering, a beamformer 

linearly weights spatial array data for spatial filtering.  In its classical use, beamforming 

coherently amplifies a signal in a given direction while reducing undesirable signals in 

other directions.  Although beamforming is a powerful technique that enables spatial 

filtering, it has a strong dependence on a priori knowledge of the target signal’s direction 

of arrival [4].  Because of this sensitivity, beamforming is often preceded by a direction 

of arrival estimation phase. 

With regard to direction-of-arrival estimates, hyperbolic localization [5] has 

appealing qualities of interest to this research.  Of particular interest is hyperbolic 

localization performed from an elevated, mobile wireless sensor network (WSN).  The 

term hyperbolic is used to denote the use of signal time-difference-of-arrival 

measurement and calculations.  The network is elevated to promote a line-of-sight 

communication link for better range and reliability, while the mobility allows for the 

reconfiguration of sensor-target geometries for more precise direction-of-arrival 

estimates.   
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The extension of beamforming to wireless sensor networks has given rise to the 

concept of collaborative beamforming.  Here, a fully synchronized network of sensors is 

used to coherently collect and combine multiple received signals.  These signals along 

with network topology information are used to form a distributed beamforming array.  

This technique coupled with recent advances in micro sensor and multirotor unmanned 

aerial vehicle (UAV) technologies has led to the concept of a semi-stationary airborne 

sensor network.  Such a network is capable of providing both the elevation and mobility 

needed for highly accurate hyperbolic localization while providing a suitable network 

platform for collaborative signal collection. 

A. OBJECTIVE 

The dissertation objective is to maximize signal collection performance in the 

presence of various signal and sensor related errors.  To accomplish this task, we propose 

a new scheme for signal collection that is preceded by a localization phase.   

To improve the scheme’s localization accuracy, we propose the use of an 

optimally positioned two-stage localization technique.  This technique consists of an 

initial weighted least-squares estimate followed by a refined maximum-likelihood 

estimate.  Here, the initial estimate is used to reconfigure the network’s topology, thereby 

creating an optimally configured network to obtain the refined hyperbolic estimate.  To 

combat the effects of noise, we propose the use of measurement outlier diagnostics in 

concert with the two-stage technique.  Here, we postulate that the identification and 

removal of specious time-difference-of-arrival measurements will improve the robustness 

of localization in the presence of noise. 

To maximize the signal collection performance in the presence of noise, we 

propose the use of signal estimation in conjunction with collaborative beamforming.  

Using the concept of sensor stacks with knowledge of the sensor positional error 

statistics, we can derive a signal estimator to combat the effects of sensor position errors.  

To further enhance the collection capability for noise and interference rejection, we also 

propose the use of virtual filling to increase the array’s ability to reject interfering signals. 
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B. RELATED WORK 

Beamforming has been shown to be an effective method for signal collection and 

interference rejection [6], but it has been shown to be highly susceptible to array steering 

vector errors [7].  This is when an array steering vector is not in line with that of the 

target signal.  To make beamforming more robust against these array mismatch errors, 

Ahmed and Evans [8] suggest the use of inequality constraints on the array weights while 

Er and Cantoni [9] suggest the use of derivative constraints.  Both of these approaches, 

although effective, also decrease the array’s interference rejection capabilities.  Li, Stoica 

and Wang [10] developed a robust beamformer that minimized the effects of non-random 

steering errors using a diagonal loading method.  Lee and Lee [11] proposed a robust 

beamformer for signal collection, which minimizes a cost function based on received 

signal data and knowledge of steering error statistics.  The signal collection scheme 

proposed in this research uses elevated, mobile sensor network formations and signal 

estimation in the context of collaborative beamforming.  Preceded by a localization phase 

that creates a unique sensor network-to-target formation, the scheme is able to isolate the 

effects of phase perturbations due to position errors.  It then compensates for them 

through the use of sensor formations, signal estimation, and knowledge of sensor position 

error statistics.  Unlike the schemes of Ahmed and Evans [8] and Er and Cantoni [9], our 

scheme does not require any constraints on the beamformer weights.  Similar to that of 

Lee and Lee [11], our scheme utilizes sampled array data and knowledge of error 

statistics to compensate for array phase errors.  The difference being that our scheme uses 

the sampled data in a signal estimation context with consideration to array formation 

rather than an array weight optimization problem with no consideration to array 

formation. 

One of the earliest hyperbolic location systems was investigated by Carson [12] in 

1972.  He proposed a system of hydrophones to collect signal arrival times, with a goal to 

estimate the location of subsurface acoustic emitters.  Today, numerous extensions and 

breakthroughs have been made to adapt these concepts for radio frequency (RF) signals.  

Fang [13] provides a closed form solution, but the estimator is not efficient, i.e., it does 

not achieve the Cramer-Rao lower bound [14], [15].  Hahn and Tretter [16] used the 
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hyperbolic equations in a maximum-likelihood estimation scheme that is unbiased and 

asymptotically efficient.  Being a linearized system of non-linear equations, the 

maximum-likelihood estimator requires an initial reference estimate to avoid local 

minima.  Chan and Ho [5] propose a weighted least-squares approach that yields an 

efficient estimator in the small error region.  Our approach will combine the maximum-

likelihood estimate of Hahn and Tretter [16] and the weighted least-squares estimate of 

Chan and Ho [5] to create a two-stage localization technique.  Furthermore, this 

technique will use optimal sensor network formations as outlined by Ho and Vicente 

[17].  This combination of hyperbolic estimation and optimal sensor network formations 

will be used to provide highly accurate localization from an elevated, mobile WSN 

platform. 

Rousseeuw and Leroy [18] provided the first comprehensive review of robust 

estimation and the effects of statistical outlier measurements.  Key contributions by 

Mahalanobis [19] and Cook [20] helped quantify the effects of outliers in estimation by 

defining the Mahalanobis and Cook distance.  Picard and Weiss [21] coupled these 

findings with the concept of sparse representation to derive a bound on the number of 

outliers that can be identified in a hyperbolic localization problem.  Many researchers 

have contributed techniques to combat the effects of outlier measurements.  McGuire, 

Plataniotis and Venetsanopoulos [22] proposed the use of data fusion techniques.  Yang, 

Wang and Luo [23] showed that convex relaxation methods can be used to overcome 

outliers induced by both measurement noise and sensor position errors.  Choi, et al. [24] 

used recursive filtering to deal with errors from incorrect stochastic information in 

location estimators.  With the proposed localization technique implemented on an 

elevated, mobile sensor network, there will be increased measurement noise due to sensor 

position errors.  To minimize the effects of these errors as well as measurement outliers, 

we propose an outlier rejection process based on single case diagnostics [18] and the 

squared-Mahalanobis distance [19].  Overall, a robust localization scheme that combines 

the proposed two-stage localization technique and the outlier rejection process is 

achieved. 
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C. ORGANIZATION 

This dissertation is organized as follows. 

The fundamental principles involved with hyperbolic localization and 

beamforming is the focus of Chapter II.  Localization based on the time-difference-of-

arrival measurements, weighted least-squares estimator, maximum-likelihood estimator, 

and robust signal outlier detection techniques are discussed in the localization section.  

With collaborative signal collection as the end goal, we also provide an introduction to 

beamforming and its extension to collaborative beamforming.   

The proposed two-phase scheme is presented in Chapter III.  This includes a 

description of the scheme’s process flow as it moves through the two phases of 

localization and collection.  A discussion of the deployment and operating concepts is 

provided to give context to the proposed scheme.  The many figures of merit used to 

evaluate the scheme’s performance are also detailed. 

The detailed analysis in support of the robust localization phase of our scheme is 

included in Chapter IV.  Additional robust signal processing techniques that are 

implemented in both estimators to combat the effects of measurement outliers and sensor 

position errors are also included.  The performance of the robust localization phase is 

then examined using simulation. 

The signal collection phase of the proposed scheme is described in Chapter V.  

This includes an analysis of sensor position errors and their effects on an array’s array 

factor.  Based on these findings, we derive a novel signal estimator to combat the effects 

of uniform and Gaussian sensor position errors.  The performance of the resulting 

collection scheme is then investigated using simulation. 

In conclusion, a summary of the dissertation, a discussion of the research’s 

significant contributions, and a list of potential future research topics are given in Chapter 

VI.  An appendix is also included, which contains selected MATLAB simulation scripts.   
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II. BACKGROUND 

To perform signal collection, we must understand the different processes involved 

in source localization and collection.  In this section, we provide the necessary 

background material to properly present our research and results.  We begin with a brief 

discussion on WSN that forms the basis of the proposed signal collection scheme.  With 

the premise of sensor networks explored, we discuss the principles of hyperbolic/TDOA 

source localization and collaborative beamforming.   

Throughout the dissertation, the following notation is used.  Bold lower-case font 

indicates a vector, while bold upper-case font indicates a matrix,  Pr   indicates the 

probability of an event,  E   indicates the expected value,  T  indicates the transpose 

operation,  H  indicates the Hermitian transpose operation, *  indicates the 2-norm 

operation, I  is the identity matrix, 1i indicates a column vector of length i,  tr   

indicates the trace of a matrix, j  indicates an imaginary quantity, c  is the signal 

propagation speed, and   is the signal wavelength. 

A. WIRELESS SENSOR NETWORKS 

Advances in wireless communications coupled with low cost multifunctional 

sensors have given rise to the growth of WSNs.  A WSN is a network comprised of many 

sensor nodes deployed in or near a phenomenon to be observed.  Typical 

implementations have identical sensor nodes collecting data and routing it through a 

shared channel to a sink node for processing/storage.  An illustration of this concept is 

shown in Figure 1.  Often, the deployment mechanisms are not predetermined, thus 

requiring arbitrary deployment schemes in inaccessible locations.  The sensor network 

nodes collaborate to achieve a common goal.  Some examples of this collaboration can be 

found in [25].  For example, sensor nodes can be distributed across a geographic region 

to monitor rainfall to support flood predictions, covert sensors could be deployed along 

known supply lines to monitor enemy troop movements, or RFID sensors could be 
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deployed throughout a warehouse for inventory control [25].  A few other notable 

research areas where WSNs have been applied are environmental monitoring [26], 

military applications such as acoustic detection of helicopters and chemical weapons 

detection [27], and logistical applications such as global shipment tracking [28].   

 

Figure 1.  Wireless sensor network concept.  

1. Ground-based, Stationary Wireless Sensor Network System 
Architecture 

Sensor networks have many benefits, but the realization of an actual network can 

be complex with many design factors to consider.  Some key factors are fault tolerance, 

scalability, production cost, hardware constraints, sensor network topology, operating 

environment, transmission media, power consumption, and protocol stack [29].   

A major aspect of WSNs is the hardware components of each sensor node.  A 

typical sensor node has four basic components: a sensor, processor, transceiver, and 

power source.  There can also be some application dependent components, such as 

localization, power, and mobility systems.  Each system plays a key role in this body of 

research.  The key components of such a sensor node are shown in Figure 2.  
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Figure 2.  Key components of a sensor node. 

2. Network Time Synchronization 

Clock synchronization is an underling requirement for many WSN applications.  

A key support function, time synchronization is vital to such applications as data fusion, 

transmission time synchronization, time-based channel scheduling, and node sleep/wake 

scheduling [30].  Most studies on clock synchronization have revolved around protocol 

design [31], but at its core clock synchronization is a parameter estimation problem, thus 

meriting a signal processing approach.  The clock in each WSN node can be defined as 

 

   ,c t t   (1) 

 

where t is the ideal reference time.  Realistic systems deviate from the ideal clock due to 

imperfect clock oscillators, resulting in the general clock function  

 

   ,c cc t s t o    (2) 

 

where cs  is the clock skew and co  is the offset.  From (2), we can see that if not 

addressed, clock error can grow linearly over time.  For example, a typical crystal-quartz 

oscillator commonly used in WSNs can have frequencies that vary up to 40 ppm, causing 

potential clock errors up to  40 s  per second [30].  Although, clock synchronization is 
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a concern in many WSN applications, this research does not address this problem and 

assumes perfect synchronization across the network.  

3. Elevated, Mobile Wireless Sensor Networks 

It is well known that placing a received antenna on an elevated platform improves 

signal reception.  By elevating the antenna, the communication link is less likely to be 

obstructed while promoting a line-of-sight signal path.  From [32], the received power at 

an antenna over a reflective surface can be expressed as  

 

 
2

2
0

,r t r t
r t

h h G G
P P

d L
    

  (3) 

 

where tP is the transmitted power, rh is the receiver antenna height, th  is the transmitter’s 

antenna height, d is the distance, rG is the gain of the receive antenna, tG is the gain of 

the transmit antenna, and 0L is other associated losses.  From this expression, we can see 

that an increase in receiver or transmitter height significantly decreases the signal path 

loss, i.e., increases the ratio of to r tP P  .  For example, given a scenario in which 

2 mr th h  , 0 0 dBr tG G L    and 5000 md  , the resulting path loss is 136 dB.  

By increasing both rh and th to 100 m, the path loss is decreased to 68 dB. 

Mobility in sensor networks has many advantages with regard to source 

localization and collection.  In this research, it is not the velocity of a node that is 

important but its ability to reposition and maintain position.  For example, in 

collaborative beamforming, a mobile sensor network can be reconfigured to achieve a 

desirable array factor [2], [33].  In hyperbolic localization, a sensor network can be 

reconfigured to obtain optimal sensor to target formations for increased location 

estimation accuracy [17], [34].   

To leverage the advantage of both elevation and mobility, the proposed scheme is 

developed in the context of an elevated, mobile WSN; elevated to promote a LOS signal 



 11

path for increased received power and range, and mobile for control over sensor-target 

geometry for increased localization accuracy. 

4. Multirotor UAV as an Elevated, Nobile WSN Sensor Node 

Sensor nodes for WSNs have been developed for different operating 

environments, such as stationary ground networks [35], ground mobile networks [36], 

and airborne networks [37].  For signal collection, the ideal operating environment is 

elevated above physical obstructions and noisy surface environments.  Such a vantage 

point extends communications range and promotes a line-of-sight signal path.  For this 

research, we propose the use of an elevated, mobile WSN.  A possible realization of this 

network is via the use of multirotor unmanned aerial vehicles (UAVs) [38], [39].  These 

UAVs can provide a mobile sensor platform that in contrast to fixed-wing UAVs can 

maintain a given position.  This research does not undertake sensor network 

implementation using multirotor UAVs; however, the simulations in this dissertation 

utilize the concept of an elevated and mobile sensor node realized by multirotor UAVs. 

Although the modern multirotor UAV has only recently been developed, it 

remains a relatively simple machine.  For instance, a quadrotor has four rotors held 

together with a rigid frame [40].  Control of such vehicles is basically accomplished 

through the differential manipulation of each rotor’s thrust [38], [39].  In contrast to 

fixed-wing UAVs, multirotor UAVs are under-actuated, with the remaining degrees of 

freedom controlled through system dynamics.  Having demonstrated their effectiveness 

in many applications, such as environment mapping and monitoring [41], [42], 

transportation and construction [43], and wireless communication/networking [44], they 

have become a popular research platform.  For more information regarding multirotor 

UAVs, see [38], [39]. 

a. Multirotor UAV Station Keeping  

There are many aspects to multirotor UAVs to consider when used as a sensor 

node.  Of key concern is its ability to station keep a given position, for any deviation 

from its given position due to system errors and/or wind results in sensor position errors. 

The station keeping performance of a standard proportional-integral-derivative (PID) 
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controlled quadrotor in the presence of wind is found in Figure 3.  Here, the wind is 

modeled using a Dryden model [45].  From the illustration, we can see the observed 

position errors due to station keeping operations do not easily conform to any standard 

distribution.  The actual position errors of a multirotor UAV are mainly governed by 

wind, GPS accuracy, and flight controller scheme [46], [47], [48].  In the absence of such 

knowledge, we resort to two basic position error distributions, uniform and Gaussian. 

 

Figure 3.  Simulated quadrotor station keeping in the presence of Dryden modeled 
wind, a) UAV three-dimensional (3D) motion, b) histogram of two-

dimensional (2D) position errors, from [48]. 

B. HYPERBOLIC SOURCE LOCALIZATION 

Hyperbolic localization is the process of determining the location of a signal 

emitter based on difference of a signal’s time-of-arrival (TOA) across an array of sensor 

nodes.  Because of its dependence on the difference in TOA, it is also called localization 

via time-difference-of-arrival (TDOA) measurements.  Hyperbolic localization has been 

studied extensively and can be found in many applications [49], [50], [51].  Hyperbolic 

location is commonly applied in WSN as a passive technique; passive in the sense that 

the receiving sensors require little information or synchronization with the transmitter.  

Two-dimensional (2D) hyperbolic localization begins when a signal is received by three 
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or more synchronized sensors [5].  The transmitter’s location is then determined by a set 

of hyperbolic equations that are derived from the TDOA measurements.   

To derive this system of hyperbolic equations, let us consider a signal’s TOA at 

the ith node of an M node WSN as 

 

 0i it t d / c  ,  (4) 

 

where t0, di, and c are the signal’s time-of-emission, distance from the transmitter to the 

ith node, and signal propagation speed, respectively.  Typically, these TOA measurements 

are obtained using the cross-correlation method [16].  By taking the difference between a 

pair of nodes’ measured TOA, we eliminate t0 and can obtain a set of TDOA equations as 

 

  1 1 1 1i it t d d / c    ,  (5) 

 

with 2 3i , , ,M  .  This can be rewritten to generate hyperbolic equations that include 

the transmitter’s and the ith sensor’s location in Cartesian coordinates as [52] 

 

          2 2 2 2

1 1 1 1 1 1i i t i t t tc t t x x y y x x y y            (6) 

 

where  i ix , y  is the ith node’s location and  t tx , y  is the transmitter’s location.  With a 

minimum of three sensor nodes yielding two simultaneous equations in the form of (6), a 

two-dimensional location estimate can be determined [5]. 

Since the system of equations governing this reconstruction is non-linear, solving 

them becomes a non-trivial matter.  There are two ways to deal with this issue.  One is to 

avoid the non-linear equations altogether by selectively setting the coordinate system 

[34], [5], and the other linearizes the function through Taylor series expansion about a 

reference point [17], [52].  Additionally, the research in this dissertation is focused on 

elevated, mobile networks with an emphasis on a line-of-sight (LOS) signal path and 

does not address the non-LOS case.  For non-LOS solutions, see [53] and [54].  
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1. Weighted Least-Squares Estimation 

The least-squares method is the standard approach for parameter estimation, given 

a set of measurements that are derived from a linear function of inputs and parameters 

[55].  The least-squares solution is obtained as a set of N parameters that minimizes the 

sum of the squared errors: 

 

   2

1

,
mN

LS i i LS
i

E y f x


  ω ,  (7) 

 

where mN  is the number of noisy measurements,  ,i LSf x ω is a linear function of the ith 

input variable ix  and the 1N   solution parameter vector LSω , and iy  is the ith noisy 

measurement defined as 

 

  ,i i LS wy f x  ω ,  (8) 

 

with w  being the zero mean Gaussian measurement error.  It is important to clarify the 

linear nature of  ,i LSf x ω .  This function is considered a linear model, when the 

relationship between the input variable and the output is a linear parameterization of .LSω  

When the measurements are taken at different levels of uncertainty, the weighted least-

squares approach has been shown to be optimal [56], [57].  The weighted least-squares 

solution minimizes the sum of weighted squared-errors: 

 

   2

,
1

,
mN

WLS LS i i i WLS
i

E w y f x


  ω ,  (9) 

 

where ,LS iw  is the ith weight and WLSω  is the 1N   parameter vector.  The weighted 

least-squares estimate in matrix form is expressed as [56] 
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  ̂ 
-1T T

WLS X WX X Wy ,  (10) 

 

where y is 1mN   vector of noisy measurements, the m mN N weighting matrix is 
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where 2

y  is the measurement variance and the mN N   input variable matrix is [56] 
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2. Maximum-Likelihood Estimation 

The maximum-likelihood estimator also requires the system of equations to be 

linear.  The term “maximum-likelihood” is used because the solution maximizes the 

likelihood, i.e., the statistical model of the estimate matches that of the measurements.  

Since the maximum-likelihood estimator is both asymptotically unbiased and efficient, 

i.e., achieves the Cramer-Rao lower bound (CRLB) [15], [58], it has become widely 

adopted in the field of parameter estimation. 

To derive the maximum-likelihood solution, we consider an 1M   noisy 

measurement vector given by 

 

  , y z xω ε ,  (13) 
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where ω is the 1N ω  vector of unknown but nonrandom set of parameters to be 

estimated,  ,z ω x  is a function of ω and the input vector x , and   is the zero mean 

Gaussian measurement error.  The likelihood of y  for a given ω is governed by its 

conditional probability density function and is expressed as [52] 

 

 

 

 
    

|

1
/2

|

1
exp (1 )

2
,/ 2 ,,

y ω

T

M

f








        

y ω

y z ω C xzx y ω
C

  (14) 

 

where   denotes the determinant of a matrix, and C  is the covariance matrix of the 

measurement error   and is defined as 

 

       T

ML ML ML MLE E E      C .  (15) 

 

Finally, the maximum-likelihood estimator of ω can be obtained by minimizing the 

exponent quadratic of (14) [52] 

 

   1T

ML , ,
        Q y z C ω xy zω x . 

 

We now encounter the same problem as with the weighted least-squares estimator, where 

 ,z ω x is nonlinear, i.e., the relationship between y and x is not a linear parameterization 

of ω .  The standard solution is then to linearize the functions through a Taylor series 

expansion about a reference point rω .  Using only the first two terms of the expansion, 

we have the following approximation [52] 

 

      , ,T ts r  ω x ω xz z G   ,  (16) 
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where tsG  is the MLM N  gradient matrix given by 
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G



 



.  (17) 

The maximum-likelihood estimator can then be obtained as [52] 

     11 1ˆ ,T T
ML r ts ts ts r 

   ω ω G C G G C ωy z x .  (18) 

It is important to note that the maximum-likelihood estimator can be iteratively 

processed if there are multiple sets of TDy .  These iterations can be used to overcome the 

effects of an inaccurate rω  or compensate for increased measurement noise.  The 

iterative performance of a 15 node maximum-likelihood estimator initialized with an 

inaccurate rω  is shown in Figure 4.  With rω  set 1100 meters away from the true 

location, we can see that the estimator quickly approaches the asymptotic optimal 

minimum error value [59].  

 

Figure 4.  Iterative performance of a hyperbolic maximum-likelihood estimator in 
the presence of an inaccurate rω  estimate. 
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3. Optimal Formations for Source Localization 

To derive the optimal formations for hyperbolic localization, we first determine 

its Cramer-Rao lower bound (CRLB) [17].  For localization using polar coordinates, the 

CRLB is derived using the Fisher information matrix of the hyperbolic localization.  The 

Fisher information matrix is given by [17] 

 

  
0 0 0 0

1

T

F F

F F

X Y

Y Z r r
 

        
                

d d d d
C ,  (19) 

 

where r  is range,  is bearing, 0d is the  1 1M    true TDOA vector, and the 

   1 1M M    covariance matrix of the TDOA measurement error C is expressed as 

[17] 

 

  
2

1 12
TR

M M


  C I 1 1 ,  (20) 

 

where 2
R  is the range measurement error variance, I  is the    1 1M M    identity 

matrix, and 1M 1  is a column vector of  1M   ones.  The elements of the Fisher 

information matrix from (19) are [17] 
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and 
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1 1

2
sin sin
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F i t i i t i
i iR

Z M r r
M c

   
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        
   

  ,  (23) 

 

where c  is the signal propagation speed and  i ir , is the ith sensor’s polar location.  

Based on the use of the maximum-likelihood estimator, which is asymptotically efficient, 

the objective is to choose a sensor formation that will decouple the range and bearing 

estimates, i.e., a formation that makes the element 0FY  .  In [17], it is shown that a 

system of concentric circles satisfies this condition.  From within this concentric circle 

formation, we can select a sub-formation that either maximizes FX  or FZ , i.e., 

minimizes the CRLB of range or bearing 
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In [52], Torrieri showed that the formation of the sensors in relation to the signal 

emitter affects the localization accuracy.  This degradation in accuracy is termed the 

geometric dilution of precision (GDOP).  For the maximum-likelihood estimator, it is 

given by [52] 

 

     
11 = tr T

ML ts ts s/ c 
 G C G ,  (25) 

 
where 
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 
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    (26) 
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is the average variance of the arrival times with 2
t ,i  being the variance of the TOA 

measurements at the ith node.  To combat this degradation, we employ optimal sensor 

formations that minimize the effects of GDOP [17].  Through inspection of the CRLB, it 

can be shown that the sensor formations from Figure 5 minimize GDOP [34], [17].   

Each of the three formations in Figure 5 is suited to different applications 

depending on the estimated parameter of interest.  Here, J is the number of sensor groups 

and M is the total number of sensors.  The circular formation  3 or 5J J   provides 

optimal bearing and range estimates, independent of the targets bearing.  The line 

formation  2J   delivers the best range and bearing estimates but is dependent on the 

target’s bearing [17], [34].  The cross formation  4J   delivers performance comparable 

to the circular formation with minor dependence on the target’s bearing.  Although some 

of the formations in Figure 5 may not look like concentric circles, like the linear or cross 

formations, they are indeed two concentric circles.  One large circle surrounding a 

smaller one whose radius is zero. 

 

Figure 5.  Optimum array geometries for position estimation (minimum 
uncertainty area) using TDOA localization.  J = number of sensor groups, M 

= total number of sensor, from [17]. 

For more information regarding these optimal formations see [17] and [34].  
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4. The Airborne Symmetrical Line Array Network Configuration 

In this section, we describe the term airborne symmetric line array (ASLA) 

formation.  The ASLA formation consists of multiple elevated, mobile sensors in a line 

formation symmetric about the origin.  This formation is based on the linear formation in 

Figure 5 and is illustrated in Figure 6.  It consists of three sensor stacks that contain 

3sN M /  sensors each.  The center stack is located at the origin, with two outer stacks 

flanking the center at a distance of ar .  For hyperbolic localization, this formation has 

been show to minimize the maximum-likelihood error variance [17].  Note that each 

sensor in a stack must be separated by 2/  to guarantee independent noise and to 

minimize mutual coupling [34].   

 

Figure 6.  Illustration of the ASLA formation. 

The linear formation is special in the sense that it delivers the best performance in 

bearing and range estimates.  The caveat is that this optimality is dependent on the target 

emitter’s bearing [34].  A Monte Carlo simulation illustrating the dependence on the 

target bearing is shown in Figure 7.  Here, the hyperbolic localization accuracy of an 

eight node ASLA formation is compared with an equal numbered circular formation at 

varying target bearing.  From the simulation, we see that the bearing of the target has 

little to no effect on the circular estimate, whereas the linear formation performs better 

when the target bearing is approximately ± 30 degrees from the array’s normal direction.  



 22

Even though conditionally optimal, its high accuracy is the key reason the linear 

formation was chosen for the proposed scheme.   

 

Figure 7.  Accuracy of position estimate for fixed linear formation (blue) and fixed 
circular formation (red). 

5. TDOA Outlier Measurement Diagnostics 

With the proposed localization technique implemented on an elevated, mobile 

sensor network, there will be increased measurement noise due to sensor position and 

other sensor network related errors.  This increase in measurement noise creates a need 

for methods to mitigate the effects of statistical outliers or errors on parameter estimation.  

In this section, we cover some statistical tools used in our proposed localization scheme 

for robustness to such errors. 

To assess the influence of the ith measurement/observation in a least-squares 

solution, we can calculate the solution with and without it.  Calculating the amount of 

divergence with and without the measurement is termed “single case diagnostics” [18].  
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To perform this diagnostic, it is important to consider which measure of divergence is 

appropriate for the solution.  A standard approach is to use the squared-Mahalanobis 

distance given by [18], [19],  

 

      1 T

M ,i i iD E E  
  v v C v v , (27) 

 

where the v is the 2M  matrix containing M location estimates, iv  is the 1 2  vector 

containing the ith location estimate, and C is the covariance matrix of v .  The purpose 

of the Mahalanobis distance is to discern how much influence the ith measurement has on 

the solution given the covariance of each of the measurements. 

To illustrate this concept, we consider a set of 200 weighted least-squares location 

estimates shown in Figure 8.  In this set, there is one outlier shown in green, which we 

wish to reject.  Using the Euclidean distance from the mean as a measure of divergence, 

we see that the outlier has the same divergence as the standard estimate shown in red.  In 

contrast, using the Mahalanobis distance as the measure of divergence, we find that the 

outlier has a divergence of 34.5 where as the standard estimate has a divergence of 0.9; 

hence, the outlier can be easily identified and discarded.  

 

Figure 8.  Scatter plot of 200 hyperbolic location estimates. 
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C. BEAMFORMING 

Beamforming is an efficient signal processing technique that enables space-

division multiple access [6].  The benefits and various applications of traditional 

beamforming have been well documented [60], [61].  The extension of beamforming to 

wireless sensor networks has given rise to the concept of collaborative beamforming [2], 

[62] in which a network of synchronized and distributed sensors is used to form a 

distributed beamforming array. 

Beamforming begins with a plane wave signal impinging on the array from a 

direction-of-arrival θt.  With the signal arriving at each node with a corresponding phase 

delay, beamforming uses phase shifters to nullify this delay and constructively sums each 

node’s signal.  The concept of a plane wave falling across a uniform linear array of M 

nodes where the phase delay is a function of the distance between each node d is 

illustrated in Figure 9.   

 

Figure 9.  Plane wave impinging on a uniform linear array. 
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1. Phase Shift Beamforming 

With the phase of the incoming signal at node 1i   set to zero, the combined 

signal of a uniform linear array with M nodes, commonly termed the array factor can be 

expressed as [63] 

 

    1 sin

1

t

M
j i d

FL t sa i
i

A , we ,   



  (28) 

 
where  
 

 sin saj d
i iw Ae     (29) 

 

is the complex weight with magnitude Ai and phase sin td  ,   is the signal 

wavelength and  2 /   .  From (28), it is apparent that the array yields a maximum 

response in the direction of the beam steering angle sa .  By controlling the response of 

the array as a function of sa , the spatial diversity required for space-division multiple 

access is achieved.  Along with this diversity, beamforming also provides a signal gain 

equal to the number of receiving elements/nodes.   

There are many parameters that dictate the resulting array factor of a 

beamforming array.  Of key importance to this research is the number elements/nodes 

and their placement relative to each other.  The effect of increasing the number of 

elements/nodes in a uniform linear array’s array factor is illustrated in Figure 10.  The 

first effect is the narrowing of the main beam’s beamwidth.  The main beam is defined as 

the lobe that contains the direction of the array factor’s maximum response.  The 

beamwidth, also called the half-power beam width, is typically defined as the angle range 

at which the main beam falls above 3 dB of the maximum response.  The relationship 

between the beamwidth and the number of nodes in a linear array is given by [63] 
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d M


 .  (30) 

The second effect is the location and the number of sidelobes present in the array factor.  

Sidelobes are defined as any lobe other than the main beam lobe.  For uniform linear 

arrays, the magnitude of the nearest sidelobe to the main lobe is on average 13 dB lower 

[63].   

 

Figure 10.  Array factor of a 15 isotropic node linear array with 2d / . 

2. Adaptive Beamforming 

Adaptive beamforming is the process of adapting an antenna’s array factor in a 

manner that both increase the gain of a target signal while decreasing the gain of all 

interfering signals.  This is accomplished by placing a complex weight on each antenna 

signal.  These weights modify the phase and allow for the coherent amplification 

(reduction) of a target signal (undesired signals).  In this section, we will illustrate the 
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basic phase shift beamformer [64], [65] and the adaptive minimum variance distortionless 

response (MVDR) beamformer [66], [67].   

The MVDR beamformer combats the effects of interfering signals by placing 

nulls in their direction.  This is achieved by selecting the array weights that minimize the 

output noise variance [63].  The array output is expressed as 

 

   H Hy t  w s w u ,  (31) 

 

where w  is an 1M  vector of the complex weights to be determined, u is an 1M  

vector of the sum of all interfering signal vectors  1 sinsin[1, , , ]ii i M di d T
i e e     

represented as 

 

  
1

uN

i ii
u t 

u = ,  (32) 

 
and s is an 1M  the signal vector represented by 
 

  s ts = v ,  (33) 

 

with s(t) being the desired signal and the steering vector  1 sinsin[1, , , ]tt i M di d Te e    v  .  

By minimizing the noise contributions of the interfering signals in the output, we can 

determine the optimal weights ow .  The output variance can be shown as [63] 

 

 2 H H
y s uσ w R w + w R w .  (34) 

 

Assuming that     and H H
uE E sR ss R uu  are known, we see that the minimization 

of the output variance is reduced to the minimization of H
uw R w , which results in an 

expression for the optimal weights [63] 
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 1
1

1
o uH

u


w R v

v R v
. (35) 

 

To illustrate both the phase shift and MVDR beamforming concepts, we consider 

a scenario where a target signal with two interfering signals is received by the 15 node 

uniform linear array shown in Figure 10.  The target signal-of-interest is shown in   

Figure 11, with a direction-of-arrival (DOA) of 45 deg and a signal amplitude of one.  

The two interfering signals are arriving at a DOA of 30 and 50 deg, each with an 

amplitude of 10.   

 

Figure 11.  Transmitted signal-of-interest. 

The phase shift beamformer’s response to the interfering signals and target signal 

is shown in Figure 12.  We can see the two interfering signals have fully corrupted the 

target signal.  In contrast to the phase shift beamformer, the adaptive MVDR beamformer 

response is shown in Figure 13.  From this, we can clearly see that the MVDR 

beamformer is able to nullify interference and successfully recover the target signal.   
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Figure 12.  Response of 15 node phase shift beamformer with two 10 dB interfering 
signals at DOA of 30 and 50 degrees. 

 

Figure 13.  Output signal of the MVDR beamformer in the presence of a target 
signal at 45degt   and two interfering signals at 30 and 50 degi  . 
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phase shift beamformer has a response of approximately 13 dB and 3 dB   in the same 

directions. 

 

Figure 14.  Comparison between the MVDR and phase shift beamformers in the 
presence of a target signal at 45degt   and two interfering signals at 

30 and 50 degi  .  

3. Error Effects in Beamforming 

Two key errors to account for in beamforming are pointing errors and unintended 

sidelobe response.  Pointing errors are defined as the difference between the array’s 

actual steering direction and that of the maximum response.  The standard deviation of 

the pointing error is given by [4] 
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where   is the standard deviation of the phase errors.  With the beamwidth for a 

uniform linear array as defined in (30), the pointing errors can be expressed as 
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 ,

0.88

 
PE ULA

d M M


  .  (37) 

 

The expression for the expected side lobe level is given by [63] 

 

 
 2 2

sl 2 2

1 aa A

Ma A

 
  ,  (38) 

 

where a is the error free main beam gain, 2
a  is the variance of amplitude error and 

  2
2 iA E e  .  If the phase errors are zero mean and Gaussian, then 

2
2A e  .  

4. Sidelobe Control via Array Tapering 

For a uniform linear array, the sidelobe response can be controlled by adjusting 

the gain of each node’s response [68].  This process is termed tapering and is akin to 

windowing in digital filtering [69], [70].  Tapering an array provides a tradeoff between 

the beamwidth and the sidelobe levels.  With this in mind, we will briefly examine the 

characteristics of four tapering methods: Uniform [71], Dolph-Chebyshev [72], Taylor-

Kaiser [73], and Binomial [74].   

a. Tapering Methods for Uniform Linear Arrays 

The uniform tapered array is actually a non-tapered array as all nodes are 

uniformly weighted by one, which results in the standard phase shift beamformer with an 

array factor of  

 

    1 sin

1

M
j m d

FL
m

A e .  



   (39) 

 

This tapering method makes no consideration to sidelobe response and has the highest 

sidelobe level when compared to other methods. 
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The binomial tapered array is unique because it has zero sidelobes, but this is at 

the cost of a wider beamwidth.  The weights of an M-node binomial uniform linear array 

are calculated from the binomial coefficients as follows [70] 

 

    
 
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, 0,1, , 1

! 1 !BN

M
w m m M

m M m


  

 
 .  (40) 

 
The corresponding array factor is given by [70] 
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From this expression, we can see that the array factor decreases to zero as   approaches 

  .   

The Dolph-Chebyshev [72] taper method is best applied when the sidelobe 

response at all angles must be kept below a specific value DCR .  The taper weights for the 

Dolph-Chebyshev uniform linear array are calculated using the Dolph-Chebyshev 

window transform [70], [75] 
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where the scaling factor 0R is defined as [75] 
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The array weights ( )DCw m  are then computed as the inverse discrete Fourier transform of 

 Cheb kW  .  The corresponding array factor for an array with an even number of nodes is 

expressed as [70] 
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.  (44) 

 

The Taylor-Kaiser tapering method is similar to the Dolph-Chebyshev method but 

has an exponentially decreasing sidelobe response.  The array weights can be computed 

as [75] 
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0 1 / , 1, ,TK TKw m I m M m M      (45) 

 

where 0I  is the zeroth-order modified Bessel function of the first kind and TK is the 

parameter used to control the sidelobe level response.  The Taylor-Kaiser array factor can 

be expressed as [70] 
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b. Comparison of the Taper Methods  

A comparison of the four taper methods is illustrated in Figure 15.  From the 

results, we see that the beamwidth is inversely proportional to the sidelobe response.  We 

can see that the uniform tapering achieves the narrowest beamwidth with the highest 

sidelobe response, whereas the binomial tapering has the widest beamwidth with zero 

sidelobe response.  The Dolph-Chebyshev has the unique ability to maintain a given 

maximum sidelobe response, while the Taylor-Kaiser taper show a better sidelobe 

response at the cost of a slightly wider beamwidth.   
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Figure 15.  Beam width and sidelobe level tradeoff for four different tapering 

methods using a 15 node ULA.  The beamwidth 3 dB  line is shown in red, 
from [70].  

5. Grating Lobe Control via Virtual Filling 

In collaborative beamforming where the nodes are separated by a distance greater 

than / 2 , grating lobes in the array factor will be a significant issue [71].  Grating lobes 

are lobes that have the same magnitude as the main lobe.  To minimize the effects of 

grating lobes, the array can be virtually filled [76].  The virtual filling technique 

minimizes the grating lobes by filling in any internode distance vd   greater than / 2
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with virtual nodes.  These virtual nodes consist of interpolated complex signal data 

derived from the real nodes.  This filling is done in a manner that turns the array into a 

virtually filled uniform linear array, which is inherently free of grating lobes [76].   

A single snapshot of the complex signal received at the nth node in a collaborative 

beamforming network can be expressed as 
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where RN  is the number of signals impinging on the array, nx  is the nth node’s location 

on the x-axis, , , ,,  ,  and t i t i t iV    are the ith signal’s magnitude, phase, and bearing, 

respectively.  This expression can be written in matrix form as [76] 
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where nA  is an 1M  vector containing the complex signal snapshot from each node, nE

is an RM N matrix given by 
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and the 1RN  vector  
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Assuming that each signal’s bearing is known, an estimate of their magnitude and phase 

can be obtained using the least-squares approach expressed as [77] 
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These signal estimates are then used to represent each virtual nodes signal output.  The 

output of each virtual node is expressed as 
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where vx  is the position of the vth virtual node along the x-axis and vM  is the number of 

virtual nodes equal to  / / 2vd  . 

In this chapter, we covered hyperbolic localization and beamforming within the 

context of wireless sensor networks.  With regard to localization, we presented two 

localization techniques and their application to an optimal ASLA sensor formation.  We 

also covered the use of outlier detection techniques to mitigate measurement noise.  The 

discussion regarding beamforming focused on techniques to increase array robustness 

against various steering errors and sidelobe interference.  Together, these topics provide 

the necessary details to present our proposed signal collection scheme in the next chapter. 
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III. SOLUTION APPROACH  

This chapter begins with an explanation of the operating scenario and 

assumptions used in this dissertation.  We provide an overview of the proposed scheme 

for radio frequency source localization and signal collection.  We then define the figures 

of merit used to evaluate the scheme’s performance. 

A. PROPOSED SCHEME 

The intended operational scenario for the proposed scheme is shown in Figure 16. 

With a distant, stationary, sporadic or repeating source emitter located at  t tx , y , there is 

a network of sensors deployed with the goal of locating the emitter and collecting its 

signals.  In this scenario and in this dissertation research in general, we assume the 

following.  Sensor node deployment is restricted to a circular area, each node has an 

isotropic antenna with matched polarization, and all nodes are synchronized to a common 

clock.   

The network of M sensor nodes is initially deployed into an ASLA formation 

(introduced in Chapter II) where they form an ad hoc wireless sensor network.  Each 

node consists of a multirotor UAV, used to realize the concept of an elevated, mobile 

sensor network.  The ASLA formation shown in Figure 6 places the M sensor nodes into 

three node stacks, each containing an equal number of nodes.  These three stacks are 

deployed along the x-axis, one at the origin and the other two flanking the center on both 

sides at a distance of ar .  For source localization, this formation is used to minimize the 

estimate error variance [17], [34].  For signal collection, the node stacks allow for robust 

signal estimation.  
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Figure 16.  Operational concept of an elevated, mobile sensor network deployed in 
an ASLA formation. 

A schematic diagram of the proposed source localization and signal collection 

scheme is shown in Figure 17.  The scheme begins in the localization phase once a signal 

has been detected.  This generates a set of TDOA measurements that is fed to the location 

estimator.  Using this initial location estimate, we reorient the sensor network to be 

perpendicular to the target emitter.  The objective of this network orientation is to 

maximize the accuracy of the location estimate, which we call the refined estimate. With 

the refined estimate obtaining an improved location estimate, this information is used in 

the signal collection phase.  In this phase, each node in the network samples the signal 

and transmits these samples to the network’s sink node.  Located in the center of the 

network, the sink node uses a combination of beamform processing and signal estimation 

to combine and amplify the signal samples coherently.  This makes the signal collection 

phase essentially a collaborative beamforming effort. 
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Figure 17.  Process flow for propose signal collection scheme. 

1. Source Localization 

The objective of this phase is to obtain a precise location estimate of the target 

signal emitter.  To accomplish this, we employ the use of an unbiased and efficient 

maximum-likelihood location estimator [52].  Although an effective location estimator, it 

requires an initial position estimate, in order to avoid local minima solutions [59].  To 

satisfy this requirement, we precede the maximum-likelihood estimator with another 

estimator that does not require initialization.  For this task, we propose a weighted least-

squares estimator.   

Furthermore, after obtaining the initial estimate we take advantage of the 

network’s mobility and re-orient the network nodes to create an optimal sensor to target 

geometry [17].  This new orientation minimizes the geometric dilution of precision [52], 

thus minimizing the maximum-likelihood estimator’s error variance.  Because of this 

further refinement of the location estimate, we term the maximum-likelihood estimator 

the refining estimator.  This two-stage localization technique is illustrated in Figure 18.  

Starting in the initial configuration shown in Figure 18 (a), we obtain a location estimate 

 ˆ ˆ,t tx y  which is used to calculate the emitter bearing estimate ˆ .t   Using t̂ , we reorient 

the network nodes perpendicular to the target signal emitter, resulting in the reoriented 

network configuration as seen in Figure 18 (b). 
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Figure 18.  Network reorientation operation for the two-stage localization technique.   

In conjunction with both estimators, we propose to implement a robust 

measurement outlier rejection process to detect and reject erroneous TDOA 

measurements.  This process is used to increase the localization phase’s robustness to 

measurement error and sensor position errors.   

2. Sensor Node Position Error 

In this research, the position information of each node is assumed known.  

Fluctuations in each node’s position due to their station keeping operations are also 

assumed [47], [48], [78].  The effects of these position errors are the main concern in this 

dissertation.  With each node in the network envisioned as a multirotor UAV, the actual 

position errors are mainly governed by wind, GPS accuracy, and flight controller scheme 

[46]–[48].  In the absence of such knowledge we resort to two basic position error 

distributions, uniform and Gaussian.  More specifically, we model these small 

fluctuations in the x and y positions as two independent and identically distributed 

uniform or Gaussian random variables  and x y  , respectively.   

For the uniformly distributed position error case, the probability density functions 

are given by 
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where p  can be interpreted as the maximum position error in the x or y direction [48]. 

For the case of Gaussian position error, both random variables are zero mean with 

a variance of 2
p .  The probability density functions are expressed as 
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where 2
p  is the position error variance in the x or y direction [48]. 

3. Collaborative Signal Collection 

After the source localization, the objective of the signal collection is to collect and 

amplify the target signal.  The main concern is that, while the mobility of each node is 

allowed for optimal formations in the localization phase, it will cause array phase errors.  

To achieve the objective, despite the presence of such errors, we propose a combination 

of collaborative beamforming and signal estimation.   

In this approach, we exploit the sensor grouping of the ASLA formation.  The 

ASLA formation contains three groups of sensors placed symmetrically along the x-axis 

(see Figure 6).  With each node in a group providing a noisy sample of the same signal, a 

sample mean can be calculated.  Using each group’s sample mean in a collaborative 

phase shift beamformer, we reconstruct and amplify the signal. 

Furthermore, since the ASLA formation’s array factor contains grating lobes due 

to its large inter-stack distance ar , it is extra sensitive to interfering signals.  To increase 

the robustness of signal collection against such signals, we employ the use of virtual 
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filling [76].  This array processing technique is used to manage the array’s inherent side 

lobes and grating lobes in order to minimize the effects of interfering signals. 

It is important to note that while our scheme is not a traditional adaptive 

beamformer, it accomplishes the same task.  Adaptive beamforming is the process of 

manipulating an array’s weights in order to amplify a target signal while suppressing 

undesirable signals.  Although our approach uses fixed uniform weights, it amplifies a 

target signal using array rotation and suppresses undesirable signal through the use of 

virtual filling and tapering techniques.   

B. PERFORMANCE METRICS 

With this dissertation heavily focused on parameter estimation, it is critical to 

define performance metrics as a means to support and analyze the proposed theory and 

scheme.  The performance metrics used throughout this dissertation is defined as follows.  

For localization schemes, a widely used performance metric is the Cramer–Rao 

lower bound (CRLB) [58].  The CRLB is the theoretical minimum solution variance an 

estimator can achieve.  Any unbiased estimator that can achieve the CRLB is said to be 

efficient [59].  For our proposed network, the CRLB for location (minimum location 

uncertainty) and bearing (see Chapter II) are expressed as 
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where M is the number of sensor, ar  is the distance between the outer and center node 

stacks, 2
R  is the ranging measurement error variance, and t is the target source bearing.  

For estimation processes, the root mean-square error is a standard performance 

metric.  For source localization, we focus on two root mean-square error values, the first 

being root mean-square error of location estimates defined as  
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where t is a 2 1  vector containing the true source’s location, t̂ is the estimate t , and 

tn is the number of trials.  The second value is the root mean-square error of bearing 

estimates defined as 
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where t  is the true source bearing and t̂ is its estimate. 

For signal estimation, we focus on the root mean-square error of magnitude and 

phase.  The root mean-square error of magnitude estimates is defined as 
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where tV  is the true signal magnitude and tV̂ is its estimate.  The root mean-square error of 

phase estimates is defined as 
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where t  is the true signal magnitude and t̂ is its estimate. 

To quantify the error in a normalized array factor with and without position 

errors, we define the normalized array factor error as 
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where t  is the signal bearing, FA  is the normalized error free array factor, and A is the 

normalized array factor with position errors. 

In this chapter, we provided an overview of the proposed scheme for source 

localization and signal collection.  We described the use of two sequential location 

estimates that support a follow on signal collection.  We then described a set of 

performance metrics used to analyze the scheme’s performance.  In the next chapter, we 

present a two-stage localization technique capable of approaching the CRLB and propose 

a measurement outlier rejection process to increase localization robustness.   
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IV. ROBUST TWO-STAGE SOURCE LOCALIZATION FROM AN 
AIRBORNE SYMMETRIC LINE ARRAY NETWORK 

In this chapter, we introduce a two-stage source localization technique.  We 

examine its performance in the presence of measurement and sensor position errors.  To 

combat these effects, we propose a measurement outlier rejection technique.  This 

technique is used to identify and reject specious TDOA measurements in an effort to 

increase the localization robustness.  We then use simulations to support the theoretical 

development and analyze the performance.   

A. TWO-STAGE HYPERBOLIC LOCALIZATION 

The objective is to estimate the location of a single source emitter located at 

 t tx , y .  The sensor network is deployed in the initial ASLA configuration, as seen in 

Figure 18 (a).  In this configuration, the network detects an incoming emission and 

generates a set of TDOA measurements.  Using these measurements in the weighted 

least-squares estimator introduced in Chapter II, we obtain a location estimate.  This 

initial localization is a closed-form estimator that does not require any initialization [5], 

[79].   

1. Hyperbolic Localization via Weighted Least-Squares 

The estimator described in this section is derived from the linear array estimators 

found in [5] and [79], and a generic linear array formation is adapted for use with an 

ASLA formation.   

Since weighted least-squares estimation is primarily for linear models, its 

applicability to hyperbolic estimation is not immediately obvious.  To apply the weighted 

least-squares approach to localization, we must rewrite (6) to obtain a set of linear 

equations.  To do this, we define the noisy range difference-of-arrival measurement of a 

sensor pair as [5], [79] 

 

 0
, , , , , 1, ,i k i k i kd d i k M    ,  (62) 
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where 0
,i kd  is the true range difference between sensors i and k and ,i k  is the zero mean 

Gaussian range difference measurement error.  Then the range from the ith sensor to the 

source emitter is determined as [5] 
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By squaring both sides of (63), we obtain 
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where 2 2
i i iK x y   and ,1 ,1 1i i ir cd r r   .  In this form, we can formulate a linear 

weighted least-squares problem in which the sensors are placed in a line.  By substituting 

 22
,1 1i ir r r   in (64), we get 
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By co-locating the origin with the first sensor and making it the reference sensor, we get 

1tr r , and 1tK K , then (65) can be expressed as  
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Finally, with all the sensors in a line, we replace ,1 ,12 2i t i tx x y y   by  ,12 i t t tx x y   

where t is some constant.  With this substitution, (66) becomes 
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With (67) now linear in 1r  and  t t tx y , a weighted least-squares solution can be 

obtained as [5], [79] 
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and 1

C is the inverse covariance matrix of the TDOA measurement vector from (62).  

When all the sensors are located on the x-axis, ,1 0iy  for 2, ,i M  , resulting in 

0t .    The solution is then expressed as 
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Using (69), we calculate the y-coordinate estimate using the expression 

 

 2 2
t t tˆ ˆy r x  . (70) 

 

Using the initial estimate WLS̂ , we see that the network reorients itself into a 

desired ASLA formation, as seen in Figure 18 (b).  In this configuration, the effect of 

GDOP is minimized, thus minimizing the estimate’s CRLB [34].  To take full advantage 

of the new formation and its minimized CRLB, we propose the use of a maximum-

likelihood estimator introduced in Chapter II.  This estimator is unbiased and 

asymptotically efficient, i.e., it achieves the CRLB [59].   
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2. Hyperbolic Localization via Maximum-Likelihood Estimation 

The estimator described in this section is derived from the generic TDOA 

estimator found in [52] but here is adapted for use with an ASLA formation in polar 

coordinates. 

Introduced in Chapter II, the maximum-likelihood estimator has been shown to be 

unbiased and asymptotically efficient [59].  Its extension to hyperbolic localization is 

done in a similar fashion to that of the weighted least-squares estimator.  We rewrite (13) 

to account for time-of-arrival measurements as 

 

 0 Mt / c  t 1 D ε   (71) 

 

where D  is an 1M vector containing the range from the emitter to each node, 0t  is the 

time of signal emission, M1  is an 1M  vector of ones, and ε is an 1M vector 

containing the TOA measurement errors.  To convert the TOAs to TDOAs, we subtract 

the ith TOA measurement from the first TOA measurement to eliminate 0t .  This results in 
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To put it in matrix form, we multiply (71) by the  1M M   matrix [52] 
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to get  
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where TD My G t  is an  1 1M    vector containing all the resulting time-difference-of-

arrival measurements. 

From (18), we set ˆr WLSω ω , and the maximum-likelihood estimator’s solution in 

polar coordinates can be expressed as [52] 

 

     11 1
0

t T T T T
ML WLS M M M TD M

t

r̂
ˆ ˆ c / cˆ  

  
    
 

ω H G C G H H G C y G D , (75) 

 

where ˆWLSω  is the weighted least-squares estimate in polar coordinates, 0D  is the 

 1 1M    vector containing the distances between the reference point and the sensor 

nodes and H  is the  1 2M    matrix expressed as  
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with mr  and m  the mth node’s range and bearing, respectively, rr  and r  are the 

reference point’s range and bearing, respectively, 0,mD  the mth element of 0D , and the 

product MG H  the hyperbolic version of (17). 

B. LOCALIZATION PERFORMANCE 

A series of Monte Carlo simulations to support proposed localization technique is 

presented in this section.  The results of the simulation are based on 10,000 trials each.  

For each simulation, the ASLA configuration is arranged in accordance with Figure 18, 

with 200 mar   and 5.sN    Note, since TDOA measurements are typically on the order 

of nanoseconds, for convenience, we use range difference-of-arrival (RDOA), i.e., the 

TDOA measurement weighted by the signal propagation speed c ,  which is typically on 
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the order of meters.  This substitution is used only as a means to simplify the simulation 

results and does not affect the theory in any way.   

In Figure 19, the root mean-square error of location estimate loc  for both the 

initial and refined localization are compared against their corresponding CRLB as a 

function of RDOA noise variance 2 2 2
RD Rc  .  In this simulation, 5sN  , the emitter is 

located at T[2500 m, 45 deg]t ω , 200 mar  , and each data point is the result of 

10,000 trials.  From the results, we see that the loc  of both the initial and refined 

estimates increase rapidly with noise.  As expected, the loc  of the refined estimate 

outperforms the initial estimate at all values of noise simulated.  Also, we can see that the 

refined estimator using a maximum-likelihood estimate approaches the CRLB up to 

approximately 0 dB.  It is important to note that the maximum-likelihood estimate is 

asymptotically efficient [15], but here, using the ASLA formation, it approaches the 

CRLB in one iteration.   

  

Figure 19.  Root mean-square error loc  of the initial (black) and refined (red) 

localizations versus RDOA noise.  Result based on 10,000 trials, 5sN  , 

200 m,ar   and T[2500 m, 45 deg]t ω . 
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A plot of the angular root mean-square error   for both the initial and refined 

localization as a function of 2
RD is provided in Figure 20.   In this simulation, 5sN  , the 

emitter is located at T[2500 m, 45 deg]t ω , 200 mar  , and each data point is the result 

of 10,000 trials.  The y-axis is   in radians, and the x-axis is RDOA noise in dB.  From 

the results, we observe that the same trends as in Figure 19.  From (56), we know that the 

ASLA formation yields an accurate bearing estimate.  This is validated by the simulation 

results with the refined estimator’s 30 25 10.
   rad at −10 dB RDOA noise.  The 

initial bearing estimate is just shy of CRLB, while the refined maximum-likelihood 

estimate approaches it at all simulated values.  As with the loc  estimate, the maximum-

likelihood estimator also approaches the CRLB in one iteration.   

  

Figure 20.  RMSE   of the initial (black) and refined (red) localizations versus 

RDOA noise.  Result based on 10,000 trials, 5sN  , 200 m,ar   and 
T[2500 m, 45 deg]t ω . 
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We plot both the initial and refined localization’s loc  values in Figure 21 as a 

function of sensors per stack sN .  Each estimator’s CRLB is also included for 

comparison.  In this simulation, 2 0 dB,RD   the emitter is located at 

T[2000 m, 30 deg]t  , 200 mar  , and each data point is the result of 10,000 trials.  

From the results, we see that the loc  of the initial estimate approaches the CRLB at 

2sN   but quickly diverges from it.  In contrast, the loc  of the refined estimate does not 

approach the CRLB until 5sN  .  It is interesting to note that an increasing sN  improves 

the performance of the refined estimate at a higher rate than the initial estimate. 

 

Figure 21.  Root mean-square error loc  of the initial (black) and refined (red) 

localizations versus sN .  Results based on 10,000 trials with 2 0 dB,RD 

5sN  , 200 mar  , and T[2000 m, 30 deg]t  . 

A comparison of both the initial and refined localization’s  values is shown in 

Figure 22 as a function of sensors per stack sN .  In this simulation, 2 0 dB,RD   the 

2 4 6 8 10 12 14
40

60

80

100

120

140

160

180

N
s

 lo
c (

m
)

 

 

Initial WLS Est.
Refined ML Est.
Initial Est. CRLB loc

Refined Est. CRLB 
loc



 53

emitter is located at T[2000 m, 30 deg]t  , 200 mar  , and each data point is the result 

of 10,000 trials.  From the results, we see that the   of the initial estimate is always just 

shy of the CRLB for all values of sN  simulated.  Conversely, the   of the refined 

estimate approaches the CRLB for all values of sN  simulated.  These results suggest that 

the refined maximum-likelihood estimator is a good candidate for bearing estimates 

regardless of the number of sensors employed. 

 

Figure 22.  Root mean-square error    of the initial (black) and refined (red) 

localizations versus sN .  Results based on 10,000 trials with 2 0 dB,RD   

5sN  , 200 mar  , and T[2000 m, 30 deg]t  . 

In Figure 23, both the initial and refined localization’s loc  are plotted as a 

function of the emitter’s bearing.  In this simulation, 2 0 dB,RD   the emitter is located at 

T[2000 m, ]t t  , 200 mar  , and each data point is the result of 10,000 trials.  From 

the results, it is clear that the initial and refined estimator’s performance is dependent on 

the target’s bearing (relative to the initial array configuration).  The initial estimate 
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follows the CRLB as seen in (55), while the refined estimate improves the loc within the 

range of 40 40 degt   .  From (55), we see that loc  approaches infinity as t  

approaches ± 90 deg.  This suggests that the initial estimate requires some knowledge of 

the target bearing a priori to insure a sufficiently accurate initialization for the refined 

estimate.  In other words, if the emitter bearing is greater than ± 40 deg, the initial 

estimate is insufficient in setting up the follow-on refined estimate.  If this is not possible, 

the initial estimate can be obtained using estimators that are independent of t  such as 

the ones in [5] and [80].  Note that these estimators require a random positioning of the 

sensor nodes and are not applicable to an ASLA configuration. 

   

Figure 23.  Root mean-square error loc  of the initial (o) and refined (*) 

localizations versus t .  Results based on 10,000 trials with 2 0 dB,RD 
5sN  , 200 mar  , and 2000 mtr  . 
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unsteady station-keeping operations.  This unsteadiness is mainly due to wind [46] and 

causes nodes to momentarily deviate from their given positions.  In this section, we 

model these position errors as two uniformly distributed random variables x  and y , 

each bounded by p .  The true distribution of position errors for any given UAV is 

determined by many factors such as GPS accuracy, wind effect, and flight controller [38].  

In the absence of such knowledge, we resort to a basic distribution in order to complete 

our analysis.  The effects of these position errors are illustrated in Figure 24 through 

Figure 27.  

A comparison of the initial localization’s root mean squared location error loc  

and bearing error   with and without position errors is shown in Figure 24 and      

Figure 25 as a function of the maximum position error p  (see (53)).  In this simulation, 

2 0 dB,RD   the emitter is located at T[2000 m, 30 deg]t  , 200 mar  , and each data 

point is the result of 10,000 trials.  From the plots, we see that the root mean squared 

location error monotonically increases with p , both in location and bearing estimates.   

 

Figure 24.  Initial localization’s root mean-square error loc with no position errors 

(black) and with position errors (red) versus maximum uniform position 

error p .  Results based on 10,000 trials with 2 0 dB,RD  5sN  , 

200 mar  , and T[2000 m, 30 deg]t  . 
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Figure 25.  Initial localization’s root mean-square error  with no position errors 

(black) and with position errors (red) versus maximum uniform position 

error p .  Results based on 10,000 trials with 2 0 dB,RD  5sN  , 

200 mar  , and T[2000 m, 30 deg]t  . 

Similar to Figure 24 and Figure 25, the performance of the refined localization as 

a function of p  is shown in Figure 26 and Figure 27.  In this simulation, 2 0 dB,RD   the 

emitter is located at T[2000 m, 30 deg]t  , 200 mar  , and each data point is the result 

of 10,000 trials.  From the results, we see that the refined maximum-likelihood estimate 

is more resilient against position error with an almost linear response to p .  Specifically, 

we see in Figure 26 that for 1 mp  , loc  only increases by approximately 50 m.  

Overall, these results suggest that position errors play a significant role in the accuracy of 

localization using a mobile network.  In the next section, we address these errors using a 

measurement outlier rejection process. 
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Figure 26.  Refined localization’s root mean-square error loc  with no position 

errors (black) and with position errors (red) versus maximum uniform 

position error p .  Results based on 10,000 trials with 2 0 dB,RD  5sN  , 

200 mar  , and T[2000 m, 30 deg]t  . 

 

Figure 27.  Refined localization’s root mean-square error   with no position errors 

(black) and with position errors (red) versus maximum uniform position 

error p .  Results based on 10,000 trials with 2 0 dB,RD  5sN  , 

200 mar  , and T[2000 m, 30 deg]t  . 
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C. ROBUST SIGNAL LOCALIZATION VIA MEASUREMENT OUTLIER 
REJECTION 

With the goal of improving the robustness of the source localization technique, 

we propose a measurement outlier rejection process to improve localization noise 

performance.  This includes resilience to increased signal noise, sensor position errors, 

and measurement outliers.  These improvements leverage the existing outlier detection 

techniques to identify and remove specious measurement data, i.e., measurements that 

seem benign but in actuality degrade the estimate’s accuracy.  The basic premise is to 

determine the effect each measurement has on the end solution as a means to identify and 

remove measurement outliers.  In this research, we define a measurement outlier as a 

measurement taken with a variance greater than a specified multiple of the expected 

variance. 

1. Robust Hyperbolic Localization via Measurement Outlier Rejection 

When trying to detect the presence of outliers in a data set containing location 

estimates, the simplest methodology is to calculate each sample’s Euclidean distance 

from the sample mean.  The problem with this approach is that outliers heavily influence 

the sample mean, making it a poor discriminator of outliers [18].  Another approach is to 

use a statistical hypothesis test to determine the likelihood that the data set is derived 

from a single distribution [55]; however, this approach is more suited to problems with 

larger data sets ( 30  samples per stack) [55], which is not appropriate for our scheme.  

a. Measurement Outlier Rejection via the Mahalanobis Distance 

Since the localization technique is focused on a small sample size, the use of 

hypothesis testing to identify outliers is limited.  An alternative approach is the 

Mahalanobis distance.  This approach performs well with small sample sizes and is less 

affected by the presence of outliers [18].  In contrast to the Euclidean distance, the 

Mahalanobis distance calculates the distance from the mean but does so in a manner that 

accounts for the samples distribution, i.e., its covariance matrix.  Given scN  location 

estimates, the corresponding Mahalanobis distance is defined as [18] 
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      1 T

M ,i i id E E  
  v v C v v , (77) 

 

where the v is the 2scN   matrix containing all the location estimates, iv  is the 1 2  

vector containing the ith location estimate, and C is the 2 2  covariance matrix of v .  

In the proposed rejection process, we use the Mahalanobis distance of the weighted least-

squares solution to determine the best and worst candidate measurements for use in the 

final location estimate.  In this approach, we use single case diagnostics [18] to derive 

multiple weighted least-squares estimates from one set of TDOA measurements.  For 

ASLA configured network, the number of single cases for a given signal measurement is

1SCN M  . 

A classic tool for the detection of statistical outliers in least-square estimation 

problems, single case diagnostics provide a methodology to single out measurements that 

lead to strong deviations in the end solution [18].  In this approach, a single measurement 

from a set is removed, and the corresponding weighted least-squares solution is 

calculated.  This process is repeated until each measurement is treated in the same 

fashion.  The Mahalanobis distance of each solution is then calculated using the mean 

and covariance of the entire SCN  set of solutions.  The solutions with high Mahalanobis 

distance values suggest that an influential measurement was removed.  Such 

measurements are termed leverage points [18].  Conversely, if the Mahalanobis distance 

value was low, then the measurement in question is considered valid. 

b. Distribution of the Mahalanobis Distance 

With a measure of solution divergence now obtained, the next step is to be able to 

discern which values of this divergence represent outliers and which represent valid 

measurements.  This process amounts to setting a Mahalanobis distance value outlier 

threshold.  To calculate a suitable threshold value, we consider the distribution of the 

Mahalanobis distance values with and without outliers.  Given a set of location estimates 

that are Gaussian with a known mean and covariance matrix, the distribution of the 

Mahalanobis distance values follow a Chi-squared distribution [81].  The Chi-squared 
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distribution is the resulting distribution for the sum of multiple squared Gaussian random 

variables.  The Chi-squared distribution can be expressed by its degrees of freedom p, 

which is the number of squared Gaussian random variables present in the sum.  The Chi-

squared distribution of the Mahalanobis distance is expressed as [55] 
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where  is the gamma function defined as 
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The cumulative distribution function is defined as  
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and the corresponding means and variance are expressed as [55] 
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Given that our scenario considers a small number of outliers, we hypothesize that the 

distribution of the Mahalanobis distance with and without outliers is significantly similar.   

To validate this hypothesis, a comparison of Mahalanobis distance values and 

their estimated distribution are shown in Figure 28.  In this simulation, using (69), the 

histogram of 100 Mahalanobis distance values with and without outliers is shown.  The 

Chi-squared probability density functions were plotted using the sample mean.  In the 

outlier case, there are 15 outliers present with a variance five times larger than the 

expected variance.  In both cases, the estimated degrees of freedom was 1.98p  .  These 
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results help support the claim that the estimated probability density function of the 

Mahalanobis distance approximates the Chi-squared with or without a small amount of 

outliers present. 

 

Figure 28.  Comparison of histogram and Chi-squared probability density function 
of Mahalanobis distances. 

c. Outlier Rejection Threshold 

Using the previous results to support our hypothesis, we next determine the 

outlier rejection threshold.  A standard criterion for outlier rejection thresholds is the 

Tukey criteria for anomalies [82].  This criterion states that in a given range of data 

points, values at the extreme ends of the data set are considered outliers.  To quantify the 

threshold, Tukey [82] proposed the following criterion.  Taking the difference between 

the 25th and 75th percentile of a data set as the interquartile range [82] 
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we consider any data point greater than 75%Q + (3/2) QIR  as an outlier [82].  It is important 

to note that this criterion makes no consideration on the data’s distribution.  To 

incorporate knowledge of the data set distribution, we propose the use of Horn’s 

algorithm [83].   

Horn’s algorithm begins with the estimation of a data set’s distribution.  Next, the 

Tukey criterion threshold is determined using the estimated cumulative distribution 

function.  Then, all data points greater than the calculated threshold are removed from the 

data set [83].  Overall, assuming the distribution of the Mahalanobis distance values is 

Chi-squared, the interquartile range is determined by [83] 

 

    1 1Q 0.75 | p 0.25 | pIR F F   ,  (83) 

 

where the 1F  is the inverse Chi-squared cumulative distribution function.  The outlier 

threshold using Horn’s algorithm can then be expressed as [82] [83] 

 

    1 0.75 | p 3 / 2 Q
MDO IRT F   .  (84) 

 

Using the outlier rejection process in conjunction with our proposed localization, 

we wish to minimize the effects of TDOA measurement noise, position errors, and 

measurement outliers.  We term an estimator using this process a robust estimator. 

2. Performance of the Robust Localization in the Presence of 
Measurement Outliers 

To support the proposed outlier rejection process, we examine the results of four 

Monte Carlo simulations.  Each simulation evaluates the robust localization estimator’s 

performance in the presence of random measurement outliers.  Each simulation uses a 15 

node ASLA configured network in which the emitter is located at 

T[2000 m, 30 deg] .t   
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A comparison of the robust and regular weighted least-squares estimator’s root 

mean-square error loc  as a function of 2 2 2
RD Rc   is shown in Figure 29.  In this 

simulation, there are no measurement outliers present, 5sN  , the emitter is located at 

T[2000 m, 30 deg] ,t   200 mar  , and each data point is the result of 10,000 trials.  

The results show that the robust estimator’s loc is only slightly higher than the regular 

estimator at low noise levels.  In contrast, the robust estimator outperforms the regular 

estimator at high noise levels.  Overall, this result validates the effectiveness of the 

rejection process against high measurement noise.   

  

Figure 29.  Root mean-square error loc  of the weighted least-squares (red) and 

robust weighted least-squares (blue) versus RDOA noise variance.  No 
outliers.  Results based on 10,000 trials with 5sN  , 200 mar  , and 

T[2000 m, 30 deg]t  . 

In Figure 30, the robust weighted least-squares estimator’s loc  is compared 

against its corresponding CRLB at increasing RDOA noise values.  In this simulation, 

there are two random measurement outliers with a RDOA noise variance that is five 

times greater than the remaining set of measurements.  Also, 5sN  , the emitter is 
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located at T[2000 m, 30 deg]t  , 200 mar  , and each data point is the result of 10,000 

trials.  The y-axis is loc  in meters, and the x-axis is RDOA noise variance in dB.  The 

results show that the effects of the outliers are almost negligible at the lower levels of 

RDOA noise (< −5 dB).  The robust weighted least-squares estimator outperforms the 

weighted least-squares estimate at all simulated noise levels, with significant 

improvements occurring at RDOA noise level above 2 dB .  Of interest is the robust 

estimator’s performance above 6 dB, where it again outperforms the no outlier case.  This 

result validates the effectiveness of the proposed outlier rejection process for a wide 

range of measurement noise, with or without outliers present. 

   

Figure 30.  Root mean-square error loc  of the weighted least-squares estimator with 

outliers (red), weighted least-squares estimator without outliers (black), and 
robust weighted least-squares estimator with outliers (blue) versus RDOA 
noise variance.  Results based on 10,000 trials with 5sN  , 200 mar  , 

and T[2000 m, 30 deg]t  .  In the outlier cases there were two random 

outliers present at a RDOA noise variance five times 2
RD . 
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The results of two Monte Carlo simulations illustrating the robust weighted least-

squares estimator’s performance as a function of the number of random outliers present 

and their variance are shown in Figure 31 and Figure 32.  

A plot of the robust and regular weighted least-squares estimator loc  is shown in 

Figure 31 as a function of the number of random outliers present.  In this simulation,

5sN  , the emitter is located at T[2000 m, 30 deg]t  , 200 mar  , 2 0 dBRD  , the 

outlier variance is five times larger than the expected variance, and each data point is the 

result of 10,000 trials.  From the results, we see that the increase in loc  of both the 

regular and robust estimate is almost linear, with the robust estimator having a slower 

rate of increase.  This result suggests that the performance increase of the robust 

estimator is a function of the number of outliers present.  As the number of outliers 

increases, the more of them are rejected. 

 

Figure 31.  Root mean-square error loc  of the weighted least-squares estimator with 

outliers (red), weighted least-squares estimator without outliers (black), and 
robust weighted least-squares estimator with outliers (blue) versus number 
of outliers.  Results based on 10,000 trials with 5sN  , 200 mar  , and 

T[2000 m, 30 deg]t  .  In the outlier cases their RDOA noise variance is 

five times 2
RD .  
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A comparison of the robust and regular weighted least-squares estimator’s loc

values as a function of outlier variance gain is shown in Figure 32.  In this simulation, the 

parameters are similar to the ones used to create Figure 31.  From the results, we see that 

the increase in loc  approaches a maximum at variance multiplier greater than ten.  Since 

each outlier is derived with a larger variance, they are easier to identify and be removed, 

thus we see a plateauing effect on the loc .  This also suggests that above a certain 

variance, value the loc  of the robust estimator has a stronger dependence on the number 

of outliers rather than on their variance.   

  

Figure 32.  Root mean-square error loc  of the weighted least-squares estimator with 

outliers (red), weighted least-squares estimator without outliers (black), and 
robust weighted least-squares estimator with outliers (blue) versus RDOA 
noise gain.  Results based on 10,000 trials with 5sN  , 200 mar  , and 

T[2000 m, 30 deg]t  .  In the outlier cases there were 2 random outliers 

present. 

The performance of the robust weighted least-squares estimator compared to the 

regular weighted least-squares estimator as a function of the emitter’s bearing is shown in 
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equal to five times 2
RD , the emitter is located at T[2000 m, ]t t   where t  ranges 

from 60 60t   , 200 mar  , and each data point is the result of 10,000 trials.  From 

the results, we see the robust weighted least-squares estimator performs better than the 

regular estimator and at a wider range of t .  This suggests that the robust estimator has a 

smaller dependence on the emitter’s bearing compared to the regular weighted least-

squares estimate.  This also validates the effectiveness of the rejection processes in 

increasing the initial estimate’s accuracy in the presence of measurement outliers.  From 

Figure 23, we see that the refined estimator’s performance is dependent on the initial 

estimator’s performance; therefore, any improvement to the initial estimate’s accuracy 

benefits the overall localization performance. 

  

Figure 33.  Root mean-square error loc  of the weighted least-squares estimator 

(circle) and robust weighted least-squares estimator (diamond) versus t .  

Results based on 3,000 trials with 2 0 dB,RD  5sN  , 200 mar  , and

2000 mtr  .  In both cases there were 2 random outliers present at a RDOA 

noise variance five times 2
RD . 
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D. PERFORMANCE OF THE ROBUST LOCALIZATION IN THE 
PRESENCES OF MEASUREMENT OUTLIERS AND UNIFORM 
POSITION ERRORS 

In this section, we examine at the performance of the proposed robust weighted 

least-squares localization in the presence of measurement outliers and uniform position 

errors.  To assess the performance of the localization with position errors we evaluated 

two Monte Carlo simulations, with and without measurement outliers present.  Each 

simulation uses a 15 node ASLA configured network in which the emitter is located at 

T[2000 m, 30 deg]t  , 200 mar  , 2 0 dB,RD  , and all data points are the result of 

10,000 trials.   

A comparison of the robust and regular weighted least-squares estimator’s loc  as 

a function of maximum uniform position error p is shown in Figure 34.  In this case, 

there are no measurement outliers present.  From the results, we see that the robust 

estimator does not improve performance over the regular estimator until a p value of 0.4 

meters.  Overall, this would suggest that the outlier rejection process is not beneficial in 

the small position error case given that there are no outliers present.   

  

Figure 34.  Root mean-square error loc  of the weighted least-squares estimate (red) 

and robust weighted least-squares estimate (blue) versus p .  For 

comparison the no error case is shown in black.  Results based on 10,000 

trials with 2 0 dB,RD   5sN  , 200 mar  , and T[2000 m, 30 deg]t ω . 
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Now, with measurement outliers present, a comparison of the robust and regular 

weighted least-squares estimator’s loc  is shown in Figure 35.  In contrast to Figure 34, 

the robust estimator shows a semi-fixed amount improvement over the regular estimator 

at all values of position errors simulated.  This result suggests that the robust estimator is 

effective against measurement outliers but only marginally effective in the presence of 

positon errors. 

 

Figure 35.  Root mean-square error loc  of the weighted least-squares estimate (red) 

and robust weighted least-squares estimate (blue) versus p .  For 

comparison the no error case is shown in black.  Results based on 10,000 

trials with 2 0 dB,RD   5sN  , 200 mar  , and T[2000 m, 30 deg]t ω . 

In this chapter, we developed a localization technique that is capable of 

approaching the CRLB.  This technique consists of two sequential location estimators, a 

weighted least-squares estimator followed by a maximum-likelihood estimator to refine 

the initial estimate.  We demonstrated that this technique is moderately susceptible to 

sensor position errors.  Next, we developed a measurement outlier rejection process to 
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outliers and large position errors.  In the next chapter, we provide a detailed description 

of the proposed collaborative signal collection technique. 
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V. ROBUST SIGNAL COLLECTION FROM AN AIRBORNE 
SEMI-STATIONARY NETWORK 

In this chapter, we develop the proposed collaborative signal collection scheme.  

This begins with an analysis of uniform and Gaussian sensor position errors and their 

effects on the ASLA formation’s array factor and main beam gain.  Through this analysis, 

we are able to derive a novel signal estimator that uses sampled data and knowledge of 

the position error statistics to compensate for the sensor position errors.  We further 

improve the collection’s robustness to interfering signals by adapting virtual filling and 

array tapering techniques to the proposed scheme.  Simulations are used to support the 

developed theory and analyze its performance. 

A. EFFECTS OF UNIFORM POSITION ERROR ON THE ARRAY FACTOR 

In Chapter IV, we showed that uniform position errors negatively affect the 

localization performance.  In this section, we discuss the effects of these errors on 

collaborative beamforming. 

From [63], we rewrite (28) to represent the array factor of a planar array as 

 

  
1

i
M j

FP sa t ii
A , w e  


 , (85) 

 

where t  is the signal bearing, sa  is the array steering angle, i.e., the direction of the 

main beam gain, i  is the ith node’s signal phase expressed as 

 

  sin cosi i t i tx y ,       (86) 

 

iw  is the ith node’s complex weight expressed as  

 

   exp sin cosi i sa i saw j x y     ,  (87) 
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M is the number of sensor nodes, and 2 /   .  Incorporating uniform position errors 

x  and y  (see (53)) into (86) yields  

 

     sin cosi i x ,i t i y ,i tx y .           (88) 

 
Separating the sensor position from its position errors, we get 
 

      1
exp exp

M

sa t x y i i p ,ii
A , , , w j j ,      


   (89) 

  
where  
 

  sin cosp ,i x ,i t y ,i t         (90) 

 

is the ith node’s phase perturbation due to position errors.  To steer the array to the 

intended signal’s direction t , we set sa  equal to t .  As a result,  exp 1i iw j  , and 

the array factor becomes the expression for the main beam gain  

 

      sin cos

1 constant

x ,i t y ,i t

sa t

M j

MB t x y sa t x y i
G , , A , , , e

    
  

       

 
   , (91) 

 

where we assume that t  is known and treat it as a constant.  By letting 

 sin cosx ,i t y ,i tj

,i e
    


 , we can express the mean of the phase error per node as 

 

        sin cosp p x ,i t y ,i t

,i x y
p p

j

,i x y x,i y ,iE e f f d d


      
   
     

  
    . (92) 

 

By substituting      1 2
x yx y pf f /      into (92), we obtain 
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      
 2

sin sin sin cos
magnitude 

sin cos
,i

p t p t

p t t



     


   
  (93) 

and 

  angle 0
,i

.


    (94) 

 

The variance of ,i  is then obtained from  

 

  2 2 2

,i ,i,iE
       , (95) 

 

where the second moment  2
,iE   is expressed as 

 

 

       

   

2
sin cos2

2

sin cos sin cos

2

1

2

1
1 

2

1

p p x ,i t y ,i t

x y
p p

p p x ,i t y ,i t x ,i t y ,i t

p p

p p

p p

j

,i x y x ,i y ,i

j j

x ,i y ,i
p

x ,i y ,i
p

E e f f d d ,

e e d d ,

d d ,

.

      
  

           

 

 

 

    

 


 



  

  

 

 



 
   
 

 
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
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 (96) 

 

Using (96), we rewrite (95) as  

 

 2 21
,i ,i     . (97) 

 

Assuming that ,x i  and ,y i  are independent and identically distributed random variables, 

we have that ,i  for 1, ,i M   are also independent and identically distributed.  Given 



 74

that  MB t x yG , ,    is the sum of these M  random variables, we express its mean and 

variance as  

 
1

MB ,i

M

G
i

M
    



   (98) 

and 

  2 2 2

1

1
MB ,i

M

G
i

M
    



   . (99) 

1. Effects of Uniform Position Error in the Special Case when the ASLA 
Formation Is Normal to the Target Source  

In the special case where the ASLA array has been reoriented (see Figure 18 (b)), 

the target emitter is normal to the array making 0t sa   deg.  In this scenario, the 

expressions for the mean of the main beam gain is simplified such that (91) is now only a 

function of y  and is written as 

 

   1
y ,i

M j
MB y i

G e 


 .  (100) 

 

By letting y ,ij
,i e 

  , we can express the mean of the phase error per node as  

 

    p y ,i

,i y
p

j
,i y y ,iE e f d



 
  
   

   . (101) 

 

By substituting    1 2
y y pf /    into (101), we obtain 

    sin
magnitude 

,i

p

p

.


 


 
  (102) 

  angle 0
,i

.


    (103) 

Along the lines of (98) and (99), we express mean and variance of the main beam gain as  
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1

MB ,i

M

G
i

M
    



     (104) 

and 

  2 2 2

1

1
MB ,i

M

G
i

M
    



     . (105) 

2. Simulation Results on the Effects of Uniform Position Errors on the 
Array Factor 

To support these findings, three simulations were conducted using an 5sN   

ASLA configured network with a total of 15M   nodes each with uniform position 

errors.  For these simulations, 1  , the source emitter is located at a bearing of 

45degt  , 200 mar  , and all data points are the result of 1,000 trials.   

A comparison between the simulated and theoretical values of MB  and 2
MB  as a 

function of p are shown in Figure 36 and Figure 37.  From the results, we see that the 

simulated values closely adhere to the theoretical values, thus validating the derived 

expressions. 

 

Figure 36.  Mean normalized main beam gain of an 5sN   ASLA versus p .  

Results based on 1,000 trials with 200 mar  , and 45 degt  .   
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Figure 37.  Variance of the normalized main beam gain for 5sN   ASLA versus 

p .  Results based on 1,000 trials with 200 mar  , and 45 degt  .   

We now evaluate the effects of uniform position errors on the array factor.  The 

average normalized array factor error   (refer to (61)) as a function of maximum 

uniform position error p  is shown in Figure 38.  In this simulation, 5sN  , each data 

point is the result of 1,000 trials, 1,   200 mar  , and 45 degt  .  From the results, 

we can see that the average   rapidly increases with p , which means that even minor 

position  1 mp   errors can have a significant effect on the array factor.  This suggests 

that position errors of this nature if not compensated for will negate any benefits that 

collaborative beamforming can provide.  This result is a key motivator for this research, 

as it is the objective of this dissertation to deliver an effective signal collection scheme 

(see Chapter V section C) in the presence of such errors. 
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Figure 38.  Average   for an 5sN  ASLA versus p .  Results based on 1,000 

trials with 1,   200 mar  , and 45 degt  .   

B. EFFECTS OF GAUSSIAN POSITION ERROR ON THE ARRAY 
FACTOR 

In the previous section, we evaluated the effects of uniform position error on the 

array factor and the main beam gain of an ASLA configuration.  In this section, we 

perform a similar analysis with Gaussian position errors.   
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becomes intractable for the Gaussian random variables.  As an alternative, we instead 

evaluate the main beam gain after the ASLA formation has been reoriented as shown in 

Figure 18 (b).  In this configuration, we assume that 0 degt sa   .  This assumption 
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1

y
M j

MB y i
G ( ) e 


 ,  (106) 

where 
yje 
is known as the wrapped Gaussian random variable [84].  By letting

,

,
y ij

g iw e 
, we can interpret the main beam gain as the sum of M wrapped Gaussian 

random variables gw
, each with a mean of zero and variance  22

g p   [84].  The 

probability density function of the wrapped Gaussian random variable is given by [84] 

 

    2

2
22

21
, exp . 

22
g

g

W g g k
gg

w k
f w









   
 
 

   (107) 

 
The mean values of the magnitude and phase, respectively, are given by [84] 
 

    2 /2
magnitude p

w e
   (108) 

  angle 0w  .  (109) 

The variance is given as 
 

  2 /22 1 p

w e
   .  (110) 

Since the main beam gain is the sum of M terms, similar to (98) and (99) we express the 

mean value of its magnitude and phase as 

 

    2 2
magnitude p /

MB Me
  ,  (111) 

  angle 0MB    (112) 

 
with a corresponding variance of 

  2 22 1 p /

MB M e .
    

 
  (113) 
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1. Simulation Results of the Effects of Gaussian Position Errors on the 
Array Factor 

To support the theory presented in the previous section, three simulations were 

conducted using an 30sN   ASLA configured network, with Gaussian position errors.  

In these simulations, the source emitter is located at a bearing of 0degt  , 1,   

200 mar  , and all data points are the result of 1,000 trials. 

A plot of the simulation and theoretical normalized values of  magnitude MB  as 

a function of  22
g p   is shown in Figure 39.  From the plot, we see that the 

simulation results closely follow the theoretical.  The results indicate that the main beam 

gain monotonically decreases as 2
g increases.  Similar to the uniform position error case, 

we see that the errors significantly reduce the effectiveness of collaborative 

beamforming. 

 

Figure 39.  Normalized values of  magnitude MB  versus position error variance

 22
g p  .  In this simulation 30sN  , 0degt  , 1,   200 mar  , 

and all data points are the result of 1,000 trials. 
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Similar to the previous simulation, a comparison between the simulation and 

theoretical values of  angle MB  as a function of  22
g p   is shown in Figure 40.  

From the results, we see that the simulation results closely follow the theoretical value, 

with the  angle MB  values approximately equal to zero at all values of 2
g  simulated.  

This suggests that the effects of Gaussian position errors have no effect on the mean 

value of the main beam phase angle.  Since position errors do not affect the  angle MB , 

it will have a prominent role in the signal estimation described in the following section.   

 

Figure 40.  Values of  angle MB versus position error variance  22
g p 

.  In this 

simulation 30sN  , 0degt  , 1,   200 mar  , and all data points are 

the result of 1,000 trials. 
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that stack with phase perturbations due to position errors.  By using the mean value of the 

in-phase and quadrature components of all the measurements from a particular stack, we 

can estimate the true signal magnitude and phase at that stack.  Since position errors do 

not affect the mean value of the phase estimate, this method will recover the signal 

magnitude and phase despite the presence of position errors.  Given this, we derive an 

expression for the mean of the in-phase and quadrature components at each stack.  This 

expression is used to estimate the phase and magnitude based on the sample mean of the 

received complex snapshots. 

Considering an ASLA configured network with uniform position errors, we 

represent a snapshot of the complex signal received at the ith node of the center stack as 

 

  sin cosx ,i t y,i tt
jj

c ,i tV e e
      , (114) 

 

where 1, , si N  , and  and t tV   are the signal’s magnitude and phase, respectively.  

Using the same assumptions used to derive (106), we express (114) as  

 

  t ,ij
c ,i tV e       (115) 

 

where ,i y,i   is a uniform random variable representing the ith node’s phase 

perturbation due to position errors in the y-direction.  The resulting complex signal is 

then represented as two random variables [85] 

 

 
I Qc ,i c ,i c ,ij ,     (116) 

 
where

Ic ,i  is the ith node’s in-phase component expressed as 

 

  cos
Ic ,i t t ,iV       (117) 

 
and 

Qc ,i  is the ith node’s quadrature component expressed as  
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  sin
Qc ,i t t ,iV .      (118) 

 

We consider 
Ic  and 

Qc  as two random variables representing a given stack’s received 

in-phase and quadrature components, respectively.  The random variables  and 
I Qc ,i c ,i   

can be interpreted as the ith instance of the true 
Ic  and 

Qc  that are perturbed by node 

position errors.  Also, the mean values of all the instances would then be the sample 

means of
Ic  and 

Qc .  Since we have shown that position errors do not affect the mean 

value of the signal phase, we can use the sample mean of 
Ic  and 

Qc  to derive an 

estimate of the true signal phase.  Overall, by deriving an expression for the mean of 
Ic  

and 
Qc , we can also determine a way to estimate the true signal phase.   

With a goal of derive an expression for the mean of 
Qc  and 

Ic  for a given stack, 

we begin by deriving the probability density function of 
Qc .  By substituting s t    

in (116), we get 

 

  sin
Qc t sV .    (119) 

 

The probability density function of s can be expressed as 

 

   1

2s s t p s t p
p

f ,     
      .  (120) 

 
We next substitute  sins s   in (119) to get  

 

 
Qc t sV .    (121) 

 
The probability density function of the random variable s  is expressed as 
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  (122) 

 
where 
 

  1 1
s sg sin ,     (123) 

and 
 

      1

21cos 1
s s

s s s sg
d / d sin ,

 
   




     (124) 

 

for    sin sint p s t p        .  Finally, the probability density function of the 

random variable 
Q,iC t sV   is expressed as  
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 (125) 

 

We then account for measurement noise using the expression  

 

 
Is C AWGNI I  ,  (126) 

and 

 
Qs C AWGNQ Q  ,  (127) 

 

where AWGNI  and AWGNQ are independent Gaussian random variables, representing the 

complex additive white Gaussian noise.  Using these expressions, we derive an estimate 

of Vt and t  from the mean of all the center stack’s complex in-phase and quadrature 
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measurements.  The mean of each stack’s in-phase and quadrature components can be 

expressed as 

 

      
I IC s C AWGNE I E E I    ,  (128) 

 

      
Q QC s C AWGNE Q E E Q    .  (129) 

 

With regard to the quadrature component, since AWGNQ  is zero mean, 
QC can be re-

written as 
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,  (130) 

 

where p p  ,  sinQ t t pA V    , and  sinQ t t pB V    .  We define the mean of 

the in-phase component similarly as  
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  (131) 

 

where  cosI t t pA V     and  cosI t t pB V    .  By solving (130) for t , we obtain 

an expression for the true signal phase that is a function of 
QC , tV  and p .  Then using 

the sample mean 
QC̂  in place of the true mean 

QC , we obtain the phase estimate t̂ .  

The derivation of the phase estimate t̂  for the case of 2t p/     is shown as 
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 (132) 

 

By squaring both sides and expanding AQ and BQ terms, we get 

 



 86

        
2

2 2 2
2 22 sin sin

Qp C t t t p t t t p
ˆ V V V V .      

      
 

 (133) 

 

Expanding the right hand side and applying the trigonometric identity

2 2cos sin cos 2    , we get  
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.  (134) 

 
By taking 4

tV  out of the square root and bringing 2
tV  to the left hand side, we get 
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  (135) 

 

By applying trigonometric identity    cos cos (1/ 2) cos cosx y x y x y       to the 

absolute value terms, we get 
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We perform the same derivation for the mean of the in-phase component to obtain  
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Taking the ratio of (136) and (137) yields 
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To solve for t , we substitute,  2
ˆ ˆ/

Q Is C C   ,  cos 2 pa   and  cos 2 tb  in (138) 

to get 
 

 
1
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ab a b
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
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  (139) 

 

By taking only the positive solutions for the absolute value terms and solving for b , we 

get 
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1
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



.  (140) 

Since  cos 2 tb  , we can solve (140) for the phase estimate  
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. (141) 

 

For the other two cases of (130), repeating the above steps yields the same expression for 

the phase estimate t̂ .  By substituting t̂  into (137) and solving for Vt, we get the signal 

magnitude estimate  
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With each stack in the array using the same estimation technique, we express their 

complex signal estimates as 

  exp 1 2 3n t ,n t ,n
ˆˆ V̂ j , n , , ,     (143) 

where  and t ,n t ,n
ˆV̂  are the left, right and center stack’s magnitude and phase estimates, 

respectively.  Each stack’s n̂  is then treated as the complex output of a single node in a 

phase shift beamforming array.  The final main beam response is then expressed as  

 

 
3

1
t n

n

ˆ ˆ


   .  (144) 

1. Signal Collection in the Presence of Thermal Noise and Uniform 
Sensor Position Error 

To demonstrate the performance of our signal collection and estimation scheme, 

we present the results of five Monte Carlo simulations in Figure 41 through Figure 45.  

The results of these simulations focus on the root mean-square error for signal magnitude 

 v  and phase   estimate.  For all five simulations, 1 m,   the source emitter is 

located at T[2000 m, 45 deg]t ω , 200ar   meters, and all data points are the result of 

10,000 trials.  Note a key parameter in the following simulations is signal to noise ratio 

(SNR) in units of dB.  This quantity is a measure of the ratio between signal power rP  

and noise power nP  and is expressed as  10SNR = 10log /r nP P . 

A comparison of the scheme’s v  and   as a function of per node SNR at 

different RDOA noise variance 2
RD  levels are shown in Figure 41 and Figure 42, 

respectively.  The target bearing estimate t̂ is derived using (75).  From the results, we 

see that the effect of the per-node SNR on v  and   is not as strong as that of the t̂  

estimate.  This suggests that the estimator is heavily dependent on the accuracy of the 

localization. 
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Figure 41.  Root mean-square error v  at different levels of RDOA noise versus 

SNR per node.  Results based on 10,000 trials with 10sN  , 200 mar  , 

.05 m,p   and T[2000 m, 45 deg]t  . 

 

Figure 42.  Root mean-square error   at different levels of RDOA noise versus 

SNR per node.  Results based on 10,000 trials with 10sN  , 200 mar  , 

.05 m,p  and T[2000 m, 45 deg]t  . 
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Two plots comparing the scheme’s   as a function of maximum uniform 

position error p  and the number of nodes per stack Ns as a function of 2
RD  are shown in 

Figure 43 and Figure 44, respectively.  In Figure 43, we see that uniform position error 

doesn’t affect   until values of 0 1 mp .   in the low 2
RD  case  2 10 dBRD   .  

Conversely, it causes a near linear increase in   for all values of p  simulated.  In 

Figure 44, the results show that the benefits of increasing Ns diminishes when 

10 nodessN  .  Unlike the results from Figure 21, where increasing the number of nodes 

improved performance, here increasing the number of nodes per stack is less effective 

above a certain value. 

 

Figure 43.  Root mean-square error   at different levels of RDOA noise under 

increase maxed uniform position error p .  Results based on 10,000 trials 

with, 10sN , 200 mar  , SNR 5 dB,  and T[2000 m, 45 deg]t  . 

 

Figure 44.  Root mean-square error   at different levels of RDOA noise under 

increase maxed uniform position error sN .  Results based on 10,000 trials 

with, 1 10 mp /  , 200 mar  , SNR 5 dB, and T[2000 m, 45 deg]t  . 
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A plot of the proposed scheme’s v  as a function of per node SNR with and 

without signal estimation is shown in Figure 45.  Each case was also evaluated at two 

different values of 2
RD .  The “with estimation” case represents our proposed scheme, i.e., 

collaborative beamforming in conjunction with the proposed signal estimator.  The “no-

estimation” case represents collaborative beamforming without the use of signal 

estimation.  In this simulation, the source emitter is located at T[2000 m, 45 deg]t  , 

10sN  , 1 m  , 1 10 mp /  , and all data points are the result of 10,000 trials.  In the 

2 15 dBRD   case, we see that the benefits of the signal estimation are evident at all 

values of SNR simulated.  As evident in the  case where the scheme 

underperforms the no-estimation case, we again see that the scheme is highly dependent 

on the accurarcy of the localization phase.  This dependency is derived from the scheme’s 

assumption that the target signal’s bearing is perfectly normal to the array, i.e., the 

 when in actuallity  it is a small random quantity based on the accuracy of 

the localization.  

 

Figure 45.  Signal v  of proposed scheme compared with the no-estimation case 

versus SNR per node values.  Results based on 10,000 trials with 
1 10 mp /  , 200 mar  , and T[2000 m, 45 deg]t  . 
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An illustration of the mean value of the normalized gain of the array as a function 

of signal frequency for different values of p  is shown in Figure 46.  For comparison, we 

also include the no-estimation case.  In this simulation, the source emitter is located at 

T[2000 m, 45 deg]t  , 10sN  , 1 m  , 1 10 mp /  , 2 0 dB,RD  and all data points 

are the result of 10,000 trials.  As frequency increases, so does  .  From (115), we see 

that phase error due to p  is proporitional to  .  As 2 /cf c  , an increase in 

frequency will magnify the negative effects of the position errors.  From the results, we 

see that allowing these position errors into beamforming (no-estimation case) results in a 

response similar to that in Figure 36 where the main beam gain is significantly reduced as 

position errors increased.  When we incorporate the proposed signal estimator, an 

improvement over the no-estimation case is apparent for all simulated frequency values.  

This suggests that the inclusion of signal estimation in collaborative beamforming can 

effectively mitigate array phase pertabations due to the uniformly distributed positioin 

errors.   

  

Figure 46.  Average signal normalized gain at different levels of RDOA noise 

versus signal frequencies.  Results based on 10,000 trials with 2 0 dB,RD 

1 10 mp /  , 200 mar  , and T[2000 m, 45 deg]t  . 
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D. SIGNAL COLLECTION FROM AIRBORNE SYMMETRIC LINE ARRAY 
NETWORK IN THE PRESENCE OF GAUSSIAN POSITION ERROR 

In the previous section, we developed a signal estimator to combat the effects of 

uniformly distributed position errors.  In this section, we derive a similar estimator for the 

case of Gaussian distributed position errors.   

In a fashion similar to (116), a snapshot of the complex signal received at the ith 

node of the center stack is represented as 

 

 
I QC ,i C ,i C ,in n n ,    (145) 

where 

  cos
IC ,i t t nn V ,     (146) 

 

with n y   with y being zero mean Gaussian position error with a variance of 2
p  

(see Chapter III) and 

  sin
QC ,i t t nn jV .     (147) 

 

Similar to the uniform position error case, we will derive an expression for the mean 

value of the in-phase and quadrature components for each stack and then use these 

expressions to derive an estimate of the signal phase.  Also similar to the uniform random 

variable case, each node’s  and 
I QC ,i C ,in n  in a stack can be interpreted as the ith instance of 

the in-phase random variable 
ICn and the quadrature random variable 

QCn .  

Focusing on the in-phase component first, the expression t n   can be expressed 

as a Gaussian random variable g  with a mean of 

 

 g t    (148) 

and variance of  
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  22
g p  .  (149) 

 

By substituting g  into 
ICn , we get  

 

  cos
IC gn .   (150) 

 

To derive the resulting probability density function of 
ICn , we first define its cumulative 

distribution function as  
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where    cosg gg   .  Since a Gaussian random variable is define between  and ,   

g  can be defined by the inverse transform of  gg   over the interval [84] 

 

    1 12 cos 2 (1 ) cos
I IC g Ck n k n        .  (152) 

 
The probability density function of 

ICn  is then expressed as [81], [86] 
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By expanding (153), we get the final expression for the probability density function of 

ICn  as 

 

   2 22 2

1 1
exp exp

2 21 2
C II

I

t t
N C

k g gC g

A B
f n

n

  
 





     
                
 ,  (155) 

 

where  12 cos
ICA k n     and  12 (1 ) cos

ICB k n     . 

To support the validity of this expression, a comparison of the histogram of 

 cos
IC t gn V   with the response of (155) over the same interval is shown in Figure 47.  

For this simulation, 10,000 instances of g  generated to form a histogram with 50 bins, 

 22 2 / 5g  , and  
C II

N Cf n is calculated with 0,1.k    As observed from the results, the 

simulated histogram closely follows the theoretical values of (155). 

 

Figure 47.  Comparison of measured and theoretical probability density function 
(pdf) of 

ICn .  Signal phase 0t   and measured pdf based on histogram 

using 10,000 points and 50 bins. 
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1. Mean Value of the In-Phase and Quadrature Components with 
Gaussian Position Errors 

With the probability density function of 
ICn  defined as a function of 2 and t g  , 

we can derive an estimate of t  at a given stack based on the sample mean of 
ICn  and 

knowledge of 2
g .  Since it is difficult to derive an expression for the mean using the 

probability density function of 
ICn , we take an alternative approach using Euler’s formula 

 

 cos singi
g ge j    .  (156) 

 

We will first consider the case where g  is Gaussian with a mean value of zero and a 

variance of 2
g .  Note that the mean value of g  is indeed equal to t  (see (148)), but we 

will first examine this simpler zero mean case in order to derive the non-zero mean case.  

The mean of the cosine term is then given as [87]  

 

    2cos exp / 2 ,g gE      (157) 

 
and 
 

  sin 0.gE     (158) 

 

Using the trigonometric identity  

 

   2 1
cos 1 cos 2

2g g   ,  (159) 

 
the variance of cos g  can be expressed as 

 

      22var cos cos cosg g gE E    .  (160) 
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By substituting (157) and (159) into (160), we get 
 

      2 2 2 2
2 /21 1

var cos 1 1 .
2 2

g g g

g e e e
           

 
  (161) 

 
Similarly, the variance of sin g is given by 

 

        22 22 1
var sin sin sin 1

2
g

g g gE E e        .  (162) 

 

Finally to consider the case where g is not zero mean, where g  is a Gaussian random 

variable with mean g t   and variance equal to 2
g .  If this is true, then 0 g g     

where 0  is the zero mean case of g .  Thus, using the trigonometric identity

cos( ) cos cos sin sinx y x y x y   , the mean of  cos g  can be expressed as  

 

       2 /2
0 0 0cos cos cos cos sin sin cos .g

gg g g gE E E e 
              (163) 

 
Similarly, 
 

      2 /2
0sin sin sin .g

g g gE E e         (164) 

 
Since  cos

IC gn  , the mean of 
ICn  is given as 

 

   2 /2cos .g

IC gE n e     (165) 

 
Following the same derivation, the mean of 

QCn is expressed as 

 

   2 /2sin .g

QC gE n e     (166) 
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2. Phase Estimates Using Sampled Base Band Signals 

Given that the signal phase is perturbed by sensor position errors, as shown in 

Chapter V section B, the mean value of the signal’s phase remains largely unaffected.  

This makes the sample mean of a given stack’s signal phase a suitable parameter from 

which to estimate the true signal phase.   

One means of estimating the signal phase is by solving (163) or (165) for t , to 

obtain the phase estimate for the center stack 

 

    2 2/2 /21 1
,

ˆ ˆ ˆcos / sin /g g

C CI Q
t c n ne e       ,  (167) 

 

where ˆ ˆ and 
C CI Q

n n  are the signal’s in-phase and quadrature component’s sample mean 

for the center stack.  This method, although valid, only uses the samples from either 

component.  The preferred approach is to use both base band signal samples by taking the 

ratio of (166) and (165) as  
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Since ,
ˆ

g t c  , an estimate of ,t̂ c  is expressed as 

 

 1
,

ˆ
ˆ tan

ˆ
cQ

cI

n

t c
n






 

   
 

.  (169) 

 

This same phase estimation method is then used for the other two stacks in the array.  The 

final signal phase estimate t̂  is then the average of these three estimates.  Since the 

ASLA array is symmetrical about the y-axis, taking the average of the estimates will also 
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compensate for the minor errors in the arrays reorientation, i.e., errors in the estimate t̂ .  

The estimated complex signal for the nth stack is then expressed as 

 

  expn t̂
ˆ j ,    (170) 

 
We then sum the estimates of all three stacks to obtain the final main beam response as 
 

 
3

1
t n

n

ˆ ˆ


     (171) 

 

3. Performance of the Signal Collection Scheme in the Presence of 
Gaussian Sensor Position Errors 

To evaluate the proposed scheme’s performance in the presence of Gaussian 

sensor position errors, we conducted a series of Monte Carlo simulations.  The results of 

these simulations focus on the root mean-square error for signal magnitude  v  and 

phase   estimate.  For comparison, the no-estimation case, i.e., beamforming without 

signal estimation, is also shown.  For each of these simulations, 1 m  , the source 

emitter is located at T[2000 m, 15 deg]t ω , 200ar   meters, and 10sN  .  All data 

points are the result of 10,000 trials.   

A comparison of the scheme’s root mean-square error of normalized magnitude 

v  with and without signal estimation as a function of the standard deviation of Gaussian 

position error g  is shown in Figure 48.  In this simulation, to isolate the effect position 

error, the target signal’s t  is known a priori.  From the results, we can see that the 

estimated case outperforms the no-estimation case at all values of g  simulated.  This 

suggests that signal estimation provides an effective means of reducing the effects of 

Gaussian position errors. 
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Figure 48.  Root mean-square error of normalize magnitude versus the standard 
deviation of Gaussian position error g .  Results based on 10,000 trials with 

10,sN   200 mar  , and T[2000 m, 15 deg]t  .  

The scheme’s   as a function of Gaussian positon error g  is shown in Figure 

49.  Similar to the previous simulation, we assumed the target signal’s t  is known a 

priori.  From the results, we observe no noticeable difference in the   between the 

proposed signal estimation case and the no-estimation case.  Similar to the uniform 

position error case, this suggests that the proposed signal estimation technique does not 

improve the accuracy of the main beam signal phase, but as seen in Figure 48 does 

improve its magnitude gain. 
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Figure 49.  Root mean-square error phase   versus the standard deviation of 

Gaussian position error g .  Results based on 10,000 trials with 10,sN   

200 mar  , and T[2000 m, 15 deg]t  . 

The scheme’s v  as a function of RDOA noise variance 2 2 2
RD Rc   is shown in 

Figure 50.  In this simulation, the scheme is evaluated at two levels of position error with

0 and 1/5 m.g g     From the results, we can see that the proposed scheme and no-

estimation case have the same performance when no position errors are present.  When 

position errors are introduced, we see that the proposed scheme outperform the no-

estimation case.  Of interest, we see that the scheme also outperforms the same case with 

no position error for values of RDOA noise greater than 2 dB.  This would suggest that at 

a given 2
RD  level, position errors become less of a factor than errors in t̂ . 
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Figure 50.  Root mean-square error of normalize magnitude versus RDOA noise.  
Results based on 10,000 trials with, 10,sN   200 mar  , and 

T[2000 m, 15 deg]t  . 

A comparison of the scheme’s   as a function of 2
RD  is shown in Figure 51.  

Similar to the previous simulation, the performance was evaluated at two levels of 

position error, 0 and 1/5 m.g g     Similar to Figure 49, we can see that the proposed 

scheme and no-estimation case have the same performance with or without position 

errors.  Also, similar to the previous simulation, we see that the cases with position error 

beat the no position error cases at values of RDOA noise greater than 2 dB. 
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Figure 51.  Root mean-square error Phase   versus RDOA noise.  Results based on 

10,000 trials with, 10,sN   200 mar  , and T[2000 m, 15 deg]t  . 

E. GRATING LOBE SUPPRESSION VIA VIRTUAL FILLING 

From (55) and (56), we know that increasing the distance ar  between the outer 

and center stacks (see Figure 6) will provide increased localization performance, but 

increasing this distance essentially increases the inter-node distance d in (28).  If the 

inter-node distance of an array is greater than 2/ , multiple grating lobes will appear in 

the array factor [71].  Since grating lobes have the same magnitude response as the main 

beam, they will significantly reduce the array’s interference rejection capabilities.   

To combat the effects of grating lobes, we propose the use of virtual filling.  

Given that the directions of arrival of all signals are known, virtual filling interpolates the 

response of a virtual uniform linear array based on signal estimates from the real array 

[76].  In virtual filling, any gap between array nodes larger than 2/  is filled in with 

virtual complex signal data.   
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With the ASLA symmetrically populated only along the x-axis and centered on 

the origin, the position of the nth virtual node is expressed as 

 

 0 1 1v,n a v a v vx r n d , n , , ,N       (172) 

 

where the virtual inter-node distance 2ad /  and Nv is the total number of virtual 

elements given as 

 

 
2

1a
v

a

r
N

d
  .  (173) 

 

To fill in the complex data of the virtual array, we begin by populating the vector 

nA  from (51) with the signal estimates n .  Using the least-squares method described in 

Chapter II, an estimate of each signal’s magnitude and phase is obtained.  The response 

of the nth virtual node is then expressed as  

 

  , ,, sin

, ,
1

R
v n t it i

N
j xj

v n t i
i

V e e
 



    (174) 

 

where RN  is the number of signals present, 1, , Ri N  , and ,t iV  , ,t i , ,t i  are the ith 

signal’s magnitude, phase, and bearing, respectively.  Once filled out, the ASLA then 

becomes a virtual uniform linear array.  Since the internode distance is now / 2 , the 

presence of grating lobes is significantly reduced.  Furthermore, various tapering methods 

(see Chapter II) can be applied to manage the remaining sidelobes. 

With no errors present, the array factor of an 5sN  ASLA configured network is 

shown in Figure 52.  For this simulation, 1  m and 200ar   .  From the plot, we can 

see that with 2ar / , there are numerous grating lobes and side lobes in the array 

factor. 
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Figure 52.  Normalized Array factor of an 5sN   ASLA phase shift beamformer 

before virtual filling process.  Simulation based on 200 mar  , and 
T[2000 m, 45 deg]t  . 

Now, with virtual filling and tapering applied, the array factor of the ASLA is 

shown in Figure 53.  With the virtually filled array having no inter-node spacing greater 

than / 2 , we can see from the plot that all the grating lobes have been eliminated.  By 

applying a binomial taper (see Chapter II) the sidelobes have also been suppressed, 

resulting in a strong main beam lobe.   

 

Figure 53.  Normalized Array factor of an 5sN  ASLA phase shift beamformer 

with virtual filling process with binomial tapering.  Simulation based on,
200 mar  , and T[2000 m, 45 deg]t  . 
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A comparison of the signal estimation scheme with and without virtual filling is 

shown in Figure 54 and Figure 55.  In this simulation, there is an interfering signal in 

addition to the target signal, 1 m  , uniform position error 1/ 20 mp  , and the ASLA 

formation consists of 10sN   with 100 m.ar    The target signal’s 0 degt  , 1sV  , 

and 60 degs  .  The interfering signal’s 55 degt  , 1sV  , and 25 degs  .   

The magnitude and phase estimate values of the main beam for 100 trials without 

virtual filling are shown in Figure 54.  From the results, we can see that the interfering 

signal corrupts the target signal, thus resulting in an erroneous main beam response.  In 

contrast, the main beam signal values using virtual filling are shown in Figure 55.  From 

the results, it is clear that the virtual filling has reduced the effects of the interfering 

signal and has improved the signal estimate. 

  

Figure 54.  Signal Estimation without virtual filling. Simulation based on,
100 mar  , target signal’s 0 degt  , 1sV  , and 60 degs  .  The 

interfering signal’s 55 degt  , 1sV  , and 25 degs  .  The true signal 

phase and magnitude is shown in red. 

0 10 20 30 40 50 60 70 80 90 100

1

1.5

2

2.5

a) Magnitude estimate without virtual filling
Trials

E
st

im
a

te
s 

o
f V

t

0 10 20 30 40 50 60 70 80 90 100
0.2

0.4

0.6

0.8

1

1.2

b) Phase estimate without virtual filling
Trials

E
st

im
a

te
s 

o
f 

t (
ra

d
)



 107

  

Figure 55.  Signal estimation with virtual filling.  Simulation based on, 100 mar  , 

target signal’s 0 degt  , 1sV  , and 60 degs   .  The interfering signal’s 

55 degt  , 1sV  , and 25 degs  .  The true signal phase and magnitude 

is shown in red. 

A comparison of the main beam’s angular root mean squared error   for the 

proposed scheme with and without virtual filling as a function of maximum uniform 

position error p  is shown in Figure 56.  In this simulation, there is one signal-of-interest 

and one interfering signal, the target signal’s 0 degt  , 1tV  , and 60 degt  , the 

interfering signal’s 55 degt  , 1tV  , 25 degt  , and 100 mar  ; and all data points 

are the result of 1,000 trials.  From the results, we see in the no virtual filling case that the 

benefits of the signal estimation are nullified by the presence of an interfering signal.  In 

contrast, when virtual filling is applied, the interfering signal is significantly reduced, 

thus improving the signal phase estimate.  Overall, this result demonstrates the proposed 

scheme’s effectiveness in the presence of both position errors and an interfering signal. 
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Figure 56.  Proposed scheme’s   with virtual filling (blue) and without (black) 

versus maximum uniform position error p  in the presence of one 

interfering signal.  In this simulation, 100 mar  , the target signal’s 

0 degt  , 1tV  , and 60 degt  , the interfering signal’s 55 degt  , 

1tV  , and 25 degt  , and all data points are the result of 1,000 trials. 

In this chapter, we studied collaborative signal collection in the presence of noise, 

sensor position errors, and interfering signals.  We developed a signal estimation method 

that utilizes sampled array data and knowledge of the positional error statistics to combat 

these errors.  We further enhanced its robustness against interfering signals by using a 

virtual filling and tapering techniques to minimize the array’s grating lobes and side lobe 

response.  Using simulation, we were able to validate the proposed scheme’s 

effectiveness in the presence of such errors and achieve the intended objective of this 

dissertation. 
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VI. CONCLUSION 

Performing collaborative beamforming from an elevated, mobile wireless sensor 

network requires a coordinated interplay of many different signal processes and 

technologies.  The objective of this research was to maximize signal collection 

performance in the presence of various signal and sensor related errors from an elevated, 

mobile wireless sensor network.  To accomplish this objective, we proposed a signal 

collection scheme that exploits an elevated, mobile network to maximize the 

collaborative collection of a target signal. 

The proposed scheme begins with an accurate source localization technique, 

which is used to determine the signal’s position and bearing.  This information was then 

used by a collaborative beamformer to maximize the collection of that target signal.  Both 

of these phases are enhanced by the versatile nature of an elevated, mobile network.  The 

mobility allows for the reconfiguration of the sensor network’s topology to help create an 

ideal sensor-target geometry.  This geometry allows for optimal localization estimates to 

be obtained.  The ability of an elevated network capable of creating sensor stacks allows 

for robust signal collection operations in the presence of uniform and Gaussian sensor 

position errors. 

In the localization technique, to obtain precise localization in the presence of 

noise and uniform position errors, we proposed the use of two sequential location 

estimators.  This technique consists of an initial weighted least-squares estimate followed 

by a maximum-likelihood estimate.  The second estimate uses the initial estimate to 

reorient the network.  This reorientation creates an ideal sensor to target geometry [17].  

This new orientation minimizes the geometric dilution of precision [52], minimizing the 

maximum-likelihood estimator’s error variance.  Simulation results showed the proposed 

localization technique to be efficient, i.e., the variance of the estimation error approaches 

the Cramer-Rao lower bound.   

To enhance the localization technique’s performance, we developed a 

measurement outlier rejection process that mitigates the effects of measurement and 
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sensor position errors.  This technique uses a combination of single case diagnostics and 

the Mahalanobis distance to identify and remove erroneous measurements from the least-

squares estimate.  Through simulation, we demonstrated this technique to be effective in 

the presence of both measurement and position errors.  For the case where only position 

errors are present, the technique was found to be effective only for high levels of position 

errors. 

For the signal collection technique, we began by analyzing the effects of sensor 

position errors on the array factor and its main beam gain.  We then derived an 

expression for the effects of both uniform and Gaussian position errors on the array’s 

main beam gain.  Through simulation, we validated our results and showed that the mean 

value of the main beam signal phase was unaffected by position errors.  To enhance the 

signal collection performance in the presents of these errors, we developed a signal 

estimator for both uniform and Gaussian position errors.  Simulation results yielded an 

improvement in array gain of approximately 37 percent for the standard deviation of 

position error values greater than 0.4 m. 

Taking advantage of the concept of a unique elevated, mobile wireless sensor 

network realized through the use of multirotor UAVs, our scheme used two existing 

localization techniques to deliver a precise source location estimate.  Using this 

information with statistical knowledge of the sensor position errors in a signal estimator, 

we derived a novel collaborative signal collection scheme.  This scheme was shown to be 

capable of collecting and amplifying a target signal in the presence of such errors.  With 

all these techniques in concert, the objective of this dissertation to maximize signal 

collection in the presence of various signal- and sensor-related errors was achieved. 

A. SIGNIFICANT CONTRIBUTIONS 

With the objective to maximize signal collection performance in the presence of 

various signal and sensor related errors, a novel scheme for robust signal collection from 

an elevated, mobile network was proposed. 

To enable the signal collection, a localization step was required.  To accomplish 

this task, a two-stage localization technique was proposed.  Using an optimal ASLA 
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sensor formation for target localization, we minimized the network’s geometric dilution 

of precision, effectively lowering the estimate’s Cramer-Rao lower bound.  By utilizing 

two unique location estimators in sequence, we created a hyperbolic location estimate 

capable of approaching the Cramer-Rao lower bound.   

To enhance the localization robustness, a measurement outlier rejection process 

was proposed.  Using the Mahalanobis distance as a measure of solution divergence, we 

were able to identify and remove erroneous measurements from the location estimate.  As 

a result, the localization estimation technique demonstrated increased resilience to both 

measurement and sensor position errors.  

To better understand the effects of position errors in collaborative beamforming, 

an expression for uniform and Gaussian sensor position error effects on an ASLA 

formation’s main beam gain were developed.  The main result was the validation that 

position errors in the ASLA formation have no effect on the mean value of the signal 

phase, which was instrumental in the development of a novel signal estimator used to 

compensate for such errors.  

Finally, a signal collection scheme that combines a novel signal estimator and 

collaborative beamforming to successfully collect a target signal despite the effects of 

sensor position errors was proposed.  Compensating for both uniform and Gaussian 

errors, the signal estimator uses sampled array data, sensor stack formations, and 

knowledge of the positional error statistics to accomplish this task.  Through simulation 

we were able to demonstrated significant improvement over the conventional 

beamforming.  To further enhance the collection capability for noise and interference 

rejection, we also adapted the use of virtual filling and tapering to manage the array’s 

grating lobes and sidelobes. 

B. FUTURE RESEARCH 

With the research and development of localization and signal collection 

consistently changing and growing, there are a number of possible extensions to the 

research presented in this dissertation. 
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The key error parameter evaluated in this research was sensor position errors 

modeled as a uniform or Gaussian random variable.  The assumption of specific 

probability density functions affects many aspects of each of the techniques and methods 

developed in this research.  Further research focused on a general approach to treat 

position errors independent of a probability distribution should be considered in order to 

fully investigate their effects on signal collection. 

The robust source localization technique presented here focused on a single case 

diagnostic.  This method assumes that single data points act alone to offset the true 

solution.  It has been shown that multiple points in unison may also have a stronger effect 

than an individual data point [18].  Given this, exploring the use of outlier subset 

rejection in the context of hyperbolic localization may lead to more beneficial results. 

Both source localization and collection operations presented here assume a line-

of-sight signal path between each sensor and the transmitter.  Further research is needed 

to adapt the scheme for use in a non-line-of-sight environment where there is also a 

multipath component to each signal path. 

With all wireless signal processing operations, there must be a consideration for 

the wireless communication scheme as well.  Further research is required to evaluate 

signal collection from an elevated, mobile network in the context of standard digital 

wireless modulation schemes, such as binary phase-shift keying, quadrature phase-shift 

keying, and quadrature amplitude modulation.  Additional effort should be devoted to the 

orthogonal frequency-division multiple access signals [85]. 



 113

APPENDIX.  SELECTED SIMULATION CODE 

Script Name: Two-Stage Localization Versus RDOA Noise 
clc; close all; clear all;warning off;  % Program 
initialization. 
L = 10000;                               % Number of 
ensemble runs.             
c = 3e8;    %signal propagation speed; 
LL = 400;      %deployment diameter 
r = 2500;     %range from origin to source 
theta_tx = degtorad(60); %This is from the x-axis 
uo = [r*cos(theta_tx) r*sin(theta_tx)]';                         
% True source position. 
  
NN=5; %Number of nodes per stacks, total sensor = 3*NN 
x=[ 0*ones(1,NN) -(LL/2)*ones(1,NN) (LL/2)*ones(1,NN)];            
% True sensor position matrix. 
y=zeros(1,length(x)); 
S=[x; y]; 
  
M = size(S,2); % Number of sensors. 
LM=length(x); 
N = size(S,1);                          % Dimension of 
localization. 
MLE_runs = 1; 
ro = sqrt(sum((uo*ones(1,M)-S).^2))';   % True source-
sensor ranges 
rdo = ro(2:end)-ro(1); 
  
R = (eye(M-1)+ones(M-1))/2;             % covariance 
structure of TDOA 
R2 = (eye(LM-1)+ones(LM-1))/2;  
NsePwrVecdB=-10:1:5;  
TSweighted least-squares= zeros(2,1); 
Linear_MLE = zeros(2,1); 
fprintf('Simulation in progress'); 
  
for nseIdx=1:length(NsePwrVecdB),       % vary measurement 
noise level 
    fprintf('.'); 
    nsePwr = 10^(NsePwrVecdB(nseIdx)/10); 
    Q = nsePwr * R;                     % Covariance matrix 
of TDOA (range difference) noise 
    Q2 = nsePwr * R2; 
    crlb(nseIdx)=sqrt(trace(TDOALocCRLB_lin(S,uo,Q))); 
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    Linear_range = 
(((1/nsePwr)*c^2*(1/(c*(r)^2))^2*(LL/2)^4 *(LM/8))^(-1)); 
    crlb_LM(nseIdx)=sqrt(Linear_range); 
%      
    Linear_bearing = (((2/nsePwr)*c^2*(1/(c^2))*(LL/2)^2 
*(LM))^(-1)); 
    crlb_LM_bearing(nseIdx)=sqrt(Linear_bearing); 
    
    SimulationMSE1 = 0; 
    SimulationMSE2 = 0; 
    SimulationMSE3 = 0; 
     
    SimulationMSE1_bearing = 0; 
    SimulationMSE2_bearing = 0; 
    SimulationMSE3_bearing = 0; 
  
    for k = 1 : L,                      % Monte Carlo 
Simulation. 
        rdNse = sqrt(nsePwr/2) * randn(M,1); 
        rdNse1 = sqrt(nsePwr/2); 
        rd = rdo + rdNse(2:end)-rdNse(1);   % Noisy source 
TDOAs (range differences). 
        u1 = TDOALoc_LINEAR(S,rd,Q); 
        [u2, senor_pos] = 
Linear_second_stage_polar_RDOA(atan2(u1(2),u1(1)),LM,LL/2,M
LE_runs,[norm(uo,2),atan2(uo(2),uo(1))]',rdNse1,[norm(u1,2)
,atan2(u1(2),u1(1))]'); 
        u2 =  [u2(1)*cos(u2(2));u2(1)*sin(u2(2))]; 
        [u3, senor_pos1] = 
Linear_second_stage_polar_RDOA(atan2(u1(2),u1(1)),LM,LL/2,M
LE_runs+3,[norm(uo,2),atan2(uo(2),uo(1))]',rdNse1,[norm(u1,
2),atan2(u1(2),u1(1))]'); 
        u3 =  [u3(1)*cos(u3(2));u3(1)*sin(u3(2))]; 
        
        SimulationMSE1 = SimulationMSE1 + norm(u1-uo,2)^2; 
        SimulationMSE2 = SimulationMSE2 + norm(u2-uo,2)^2; 
        SimulationMSE3 = SimulationMSE3 + norm(u3-uo,2)^2; 
        SimulationMSE1_bearing = SimulationMSE1_bearing + 
(atan2(u1(2),u1(1))-theta_tx)^2; 
        SimulationMSE2_bearing = SimulationMSE2_bearing + 
(atan2(u2(2),u2(1))-theta_tx)^2; 
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        SimulationMSE3_bearing = SimulationMSE3_bearing + 
(atan2(u3(2),u3(1))-theta_tx)^2; 
    end; 
    mse1(nseIdx) = sqrt(SimulationMSE1/L); 
    mse2(nseIdx) = sqrt(SimulationMSE2/L); 
    mse3(nseIdx) = sqrt(SimulationMSE3/L); 
    mse1_bearing(nseIdx) = sqrt(SimulationMSE1_bearing/L); 
    mse2_bearing(nseIdx) = sqrt(SimulationMSE2_bearing/L); 
    mse3_bearing(nseIdx) = sqrt(SimulationMSE3_bearing/L); 
end; 
fprintf('\n'); 
  
figure(1); plot(NsePwrVecdB,(mse1),'xk','MarkerSize',8); 
hold on; 
plot(NsePwrVecdB,(mse2),'*r','MarkerSize',8); hold on; 
plot(NsePwrVecdB,(crlb),'k');  
hold on; 
plot(NsePwrVecdB,(crlb_LM),'--g'); 
grid on; hold off; 
xlabel('RDOA Noise STD dB(c\sigma)');  
ylabel('RMSE Position (m)'); 
legend('1st Phase weighted least-squares Estimate','2nd 
Phase ML Estimate','1st Phase CRLB RMSE Position', '2nd 
Phase CRLB RMSE Position'); 
 
figure(3); 
plot(NsePwrVecdB,(mse1_bearing),'xk','MarkerSize',8); hold 
on; 
plot(NsePwrVecdB,(mse2_bearing),'*r','MarkerSize',8); hold 
on; 
plot(NsePwrVecdB,(crlb_LM_bearing),'-g'); 
grid on; hold off; 
xlabel('RDOA Noise STD dB(c\sigma)');  
ylabel('RMSE Bearing (rad)'); 
legend('1st Phase weighted least-squares Estimate','2nd 
Phase ML Estimate','2nd Phase CRLB RMSE Bearing'); 
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Script Name: Signal estimator versus wavelength for uniform position errors 
 
clc 
clear all 
close all 
num_run = 1000; 
rand('seed', 0) 
randn('seed', 0) 
c = 3e8; 
f = 50:100:2600; 
f = f * 1e6; 
lambda = c./(f); 
k = 2*pi./lambda; 
  
Number_of_real_nodes_Center = 10; 
Number_of_real_nodes_Outer = Number_of_real_nodes_Center; 
ML = Number_of_real_nodes_Center*3; 
%Signal 1 
Vs_1_real = 1; 
Phase_1_real = degtorad(0); 
DOA_1_real = 0; 
  
deploy_radius = 200; 
  
X_center = 0; 
Y_center = 0; 
  
X_outer = deploy_radius; 
Y_outer = 0; 
X = 0; 
Y = 0; 
  
SNR = 5; 
%%creating random receive matrix 
a = -1/10; 
b = -a; 
aa = -.9e-3; 
bb = -aa; 
Signal_estimates = zeros(6,1);   
Signal_estimates_from_mean = zeros(2,1);   
deltaX = b; 
deltaY = b; 
DOAn = bb; 
Tans_weighted least-squaresE = zeros(2,1); 
I_Q_data = zeros(3,1); 
DOA_ESTIMATES = zeros(num_run,1); 
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RMSE = zeros(4,length(Number_of_real_nodes_Center)); 
num_pts = Number_of_real_nodes_Center; 
for MCR = 1: length(k) 
     
  
    
    MCR 
    % this is the -15 dB run 
    Tans_weighted least-squaresE = 0; 
    for xx = 1:num_run 
  
        XnC = (a + (b-a).*rand(num_pts,1)); 
        YnC = (a + (b-a).*rand(num_pts,1)); 
        XnOL = (a + (b-a).*rand(num_pts,1)); 
        YnOL = (a + (b-a).*rand(num_pts,1)); 
        XnOR = (a + (b-a).*rand(num_pts,1)); 
        YnOR = (a + (b-a).*rand(num_pts,1)); 
  
        DOA_1_est = Locator_Function([2000;degtorad(70)],-
10) - degtorad(70); 
 
        Rx_sig_center = Vs_1_real.*exp((1i).*(Phase_1_real 
+ k(MCR).*((X_center + XnC).*sin(DOA_1_est) + (Y_center + 
YnC).*cos(DOA_1_est)))); 
        Rx_sig_center_w_AWGN = awgn(Rx_sig_center, SNR); 
        %Summend Center Signal 
        Center_IQ_Est = sum(Rx_sig_center); 
  
        Rx_sig_outer_left = 
Vs_1_real.*exp((1i).*(Phase_1_real + k(MCR).*((-
deploy_radius+ XnOL).*sin(DOA_1_est) + (Y_outer + 
YnOL).*cos(DOA_1_est)))); 
        Rx_sig_outer_left_w_AWGN = awgn(Rx_sig_outer_left, 
SNR); 
        %Estimate Mag and Phase for Left Cluster 
        Left_IQ_Est = sum(Rx_sig_outer_left); 
  
        Rx_sig_outer_right = 
Vs_1_real.*exp((1i).*(Phase_1_real + 
k(MCR).*((deploy_radius+ XnOR).*sin(DOA_1_est) + (Y_outer + 
YnOR).*cos(DOA_1_est)))); 
        Rx_sig_outer_right_w_AWGN = 
awgn(Rx_sig_outer_right, SNR); 
        %Estimate Mag and Phase for Right Cluster 
        Right_IQ_Est = sum(Rx_sig_outer_right); 
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        Sig_IQ_est = 
abs(sum([Center_IQ_Est;Left_IQ_Est;Right_IQ_Est]))/ML; 
  
        Tans_weighted least-squares = [Tans_weighted least-
squaresE Sig_IQ_est]; 
     
    end 
    Tans_weighted least-squares = Tans_weighted least-
squaresE(2:end); 
    RMSE(1,MCR) = mean(Tans_weighted least-squaresE); 
     
    Tans_weighted least-squares = 0; 
    for xx = 1:num_run 
  
        XnC = (a + (b-a).*rand(num_pts,1)); 
        YnC = (a + (b-a).*rand(num_pts,1)); 
        XnOL = (a + (b-a).*rand(num_pts,1)); 
        YnOL = (a + (b-a).*rand(num_pts,1)); 
        XnOR = (a + (b-a).*rand(num_pts,1)); 
        YnOR = (a + (b-a).*rand(num_pts,1)); 
  
        DOA_1_est = Locator_Function([2000;degtorad(70)],-
5) - degtorad(70); 
  
        Rx_sig_center = Vs_1_real.*exp((1i).*(Phase_1_real 
+ k(MCR).*((X_center + XnC).*sin(DOA_1_est) + (Y_center + 
YnC).*cos(DOA_1_est)))); 
        Rx_sig_center_w_AWGN = awgn(Rx_sig_center, SNR); 
        %Summend Center Signal 
        Center_IQ_Est = sum(Rx_sig_center); 
  
        Rx_sig_outer_left = 
Vs_1_real.*exp((1i).*(Phase_1_real + k(MCR).*((-
deploy_radius+ XnOL).*sin(DOA_1_est) + (Y_outer + 
YnOL).*cos(DOA_1_est)))); 
        Rx_sig_outer_left_w_AWGN = awgn(Rx_sig_outer_left, 
SNR); 
        %Estimate Mag and Phase for Left Cluster 
        Left_IQ_Est = sum(Rx_sig_outer_left); 
  
        Rx_sig_outer_right = 
Vs_1_real.*exp((1i).*(Phase_1_real + 
k(MCR).*((deploy_radius+ XnOR).*sin(DOA_1_est) + (Y_outer + 
YnOR).*cos(DOA_1_est)))); 
        Rx_sig_outer_right_w_AWGN = 
awgn(Rx_sig_outer_right, SNR); 
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        %Estimate Mag and Phase for Right Cluster 
        Right_IQ_Est = sum(Rx_sig_outer_right); 
           
        Sig_IQ_est = 
abs(sum([Center_IQ_Est;Left_IQ_Est;Right_IQ_Est]))/ML; 
  
        Tans_weighted least-squaresE = [Tans_weighted 
least-squaresE Sig_IQ_est]; 
     
    end 
    Tans_weighted least-squaresE = Tans_weighted least-
squaresE(2:end); 
    RMSE(2,MCR) = mean(Tans_weighted least-squaresE); 
end 
    figure(1) 
    plot(lambda,RMSE(1,:),lambda,RMSE(2,:)) 
    xlabel('Lambda(\lambda)');  
    ylabel('Average Normalized Gain'); 
    legend('RDOA noise STD (-10 dB)','RDOA noise STD (-5 
dB)'); 
    figure(2) 
    plot(f./1e6,RMSE(1,:),f./1e6,RMSE(2,:)) 
    xlabel('Lambda(\lambda)');  
    ylabel('Average Normalized Gain'); 
    legend('RDOA noise STD (-10 dB)','RDOA noise STD (-5 
dB)'); 
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